Synergic Effect of Quercetin and Astragalin from Mulberry Leaves on Ani-inflammation

상엽 유래 퀘세틴과 아스트라갈린의 항염증에 대한 상승효과

  • Mok, Ji-Ye (Department of Health Care & Science, College of Alternative Medicine, Jeonju University) ;
  • Jeong, Seung-Il (Jeonju Biomaterials Institute) ;
  • Kim, Jang-Ho (Jeonbuk Technopark) ;
  • Jang, Seon-Il (Department of Health Care & Science, College of Alternative Medicine, Jeonju University)
  • 목지예 (전주대학교 대체의학대학 건강관리) ;
  • 정승일 (전주생물소재연구소) ;
  • 김장호 (전북테크노파크) ;
  • 장선일 (전주대학교 대체의학대학 건강관리)
  • Received : 2011.08.22
  • Accepted : 2011.10.06
  • Published : 2011.10.25

Abstract

The leaf of mulberry (Morus alba L) has long been used in Oriental medicine for the prevention or treatment of several diseases. However, little is known about the inhibitory effects of a single compound isolated from the mulberry leaves on inflammatory response. We are isolate a single compound of quercetin (3,3',4',5,7-pentahydroxyflavone) and astragalin (kaempferol-3-O-glucopyranoside) from the mulberry leaves, and then investigate the anti-inflammatory effects of quercetin, astragalin or quercetin plus astragalin in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. Each compound suppressed the production of inflammatory mediators (NO, $PGE_2$ and IL-6) in LPS-stimulated murine peritoneal macrophages in a dose-dependent manner. Especially, the cotreatment of quercetin (2.5 ${\mu}M$) and astragalin (2.5 ${\mu}M$) markedly suppressed the production and the expression of inflammatory mediators. These suppressive effects were synergistically increased by their combination. These results suggest that the combination of quercetin and astragalin from the mulberry leaves may be useful for therapeutic drugs against inflammatory immune diseases, probably by suppressing the production of inflammatory mediators.

Keywords

References

  1. Sirisinha, S. Insight into the mechanisms regulating immune homeostasis in health and disease. Asian Pac J Allergy Immunol. 29: 1-14, 2011.
  2. Noma, T. Helper T cell paradigm: Th17 and regulatory T cells involved in autoimmune inflammatory disorders, pathogen defense and allergic diseases. Nihon Rinsho Meneki Gakkai Kaishi. 33: 262-271, 2010. https://doi.org/10.2177/jsci.33.262
  3. Yamada, T. Regulation of the expression of inducible nitric oxide synthase by prostanoids. Yakugaku Zasshi. 129: 1211-1214, 2009. https://doi.org/10.1248/yakushi.129.1211
  4. Harizi, H., Gualde, N. Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators. Cell Mol Immunol. 3: 271-177, 2006.
  5. Moulton, P.J. Inflammatory joint disease: the role of cytokines, cyclooxygenases and reactive oxygen species. Br J Biomed Sci. 53: 317-324, 1996.
  6. Swart, R.M., Hoorn, E.J., Betjes, M.G., Zietse, R. Hyponatremia and inflammation: the emerging role of interleukin-6 in osmoregulation. Nephron Physiol. 118: 45-51, 2011.
  7. Hirano, T. Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir. Proc Jpn Acad Ser B Phys Biol Sci. 86: 717-730, 2010. https://doi.org/10.2183/pjab.86.717
  8. El-Sayyad, H.I., El-Sherbiny, M.A., Sobh, M.A., Abou-El-Naga, A.M., Ibrahim, M.A., Mousa, S.A. Protective effects of Morus alba leaves extract on ocular functions of pups from diabetic and hypercholesterolemic mother rats. Int J Biol Sci. 7: 715-728, 2011. https://doi.org/10.7150/ijbs.7.715
  9. Kobayashi, Y., Miyazawa, M., Kamei, A., Abe, K., Kojima, T. Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Biosci Biotechnol Biochem. 74: 2385-2395, 2010. https://doi.org/10.1271/bbb.100392
  10. Chen, J., Li, X. Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice. Asia Pac J Clin Nutr. 1: 290-294, 2007.
  11. Mudra, M., Ercan-Fang, N., Zhong, L., Furne, J., Levitt, M. Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects. Diabetes Care. 30: 1272-1274, 2007. https://doi.org/10.2337/dc06-2120
  12. Chen, F., Nakashima, N., Kimura, I., Kimura, M. Hypoglycemic activity and mechanisms of extracts from mulberry leaves (folium mori) and cortex mori radicis in streptozotocin-induced diabetic mice. Yakugaku Zasshi. 115: 476-482, 1995. https://doi.org/10.1248/yakushi1947.115.6_476
  13. Kim, S.Y., Gao, J.J., Lee, W.C., Ryu, K.S., Lee, K.R., Kim, Y.C. Antioxidative flavonoids from the leaves of Morus alba. Arch Pharm Res. 22: 81-85, 1999. https://doi.org/10.1007/BF02976442
  14. Shaik, Y.B., Castellani, M.L., Perrella, A., Conti, F., Salini, V., Tete, S., Madhappan, B., Vecchiet, J., De Lutiis, M.A., Caraffa, A., Cerulli, G. Role of quercetin (a natural herbal compound) in allergy and inflammation. J Biol Regul Homeost Agents. 20: 47-52, 2006.
  15. Chirumbolo, S., Marzotto, M., Conforti, A., Vella, A., Ortolani, R., Bellavite, P. Bimodal action of the flavonoid quercetin on basophil function: an investigation of the putative biochemical targets. Clin Mol Allergy. 8: 1-13, 2010. https://doi.org/10.1186/1476-7961-8-1
  16. Matsumoto, M., Kotani, M., Fujita, A., Higa, S., Kishimoto, T., Suemura, M., Tanaka, T. Oral administration of persimmon leaf extract ameliorates skin symptoms and transepidermal water loss in atopic dermatitis model mice, NC/Nga. Br J Dermatol. 146: 221-227, 2002. https://doi.org/10.1046/j.1365-2133.2002.04557.x
  17. Kotani, M., Matsumoto, M., Fujita, A., Higa, S., Wang, W., Suemura, Kishimoto T, Tanaka T. Persimmon leaf extract and astragalin inhibit development of dermatitis and IgE elevation in NC/Nga mice. J Allergy Clin Immunol. 106: 159-166, 2000. https://doi.org/10.1067/mai.2000.107194
  18. 진은영, 박영서, 장재권, 정명수, 박훈, 심건섭, 최영진. 용매 추출과 병용 추출법을 이용한 양파 과육으로부터 quercetin 관련물질의 추출. 산업식품공학. 13: 147-153, 2009.
  19. Do, J.C., Yu, Y.J., Jung, K.Y., Son, K.H. Flavonoids from the leaves of Polygala japonica. Kor J Pharmacogn. 23: 9-13, 1992a.
  20. Do, J.C., Jung, K.Y., Son, K.H. Flavonoid glycosides from the frods of Pyrrosia lingua. Kor J Pharmacogn. 23: 276-269, 1992b.
  21. De Nardin, E. The role of inflammatory and immunological mediators in periodontitis and cardiovascular disease. Ann Periodontol. 6: 30-40, 2001. https://doi.org/10.1902/annals.2001.6.1.30
  22. Neurath, M.F., Finotto, S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev. 22: 83-89, 2011. https://doi.org/10.1016/j.cytogfr.2011.02.003
  23. Kotake, Y., Sang, H., Miyajima, T., Wallis, G.L. Inhibition of NF-kappaB, iNOS mRNA, COX2 mRNA, and COX catalytic activity by phenyl-N-tert-butylnitrone (PBN). Biochimica etBiophysica Acta. 1448: 77-84, 1998. https://doi.org/10.1016/S0167-4889(98)00126-8
  24. Chen, Y.C., Shen, S.C., Chen, L.G., Lee, T.J. Yang, L.L. Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem Pharmacol. 61: 1417-1427, 2001. https://doi.org/10.1016/S0006-2952(01)00594-9
  25. Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H., Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agric Food Chem. 51: 571-581, 2003. https://doi.org/10.1021/jf020926l
  26. Arabbi, P.R., Genovese, M.I., Lajolo, F.M. Flavonoids in vegetable foods commonly consumed in Brazil and estimated ingestion by the Brazilian population. J Agric Food Chem. 52: 1124-1131, 2004. https://doi.org/10.1021/jf0499525