DOI QR코드

DOI QR Code

Solvent-free determination of BTEX in water using repetitive membrane extraction followed by GC-MS

반복적인 막 추출과 GC-MS를 이용한 물 중 BTEX의 분석

  • Kim, He-Kap (Department of Environmental Science, College of Natural Sciences, Kangwon National University) ;
  • Kim, Se-Young (Department of Environmental Science, College of Natural Sciences, Kangwon National University) ;
  • Lee, Soo-Hyung (Department of Environmental Science, College of Natural Sciences, Kangwon National University)
  • 김희갑 (강원대학교 자연과학대학 환경과학과) ;
  • 김세영 (강원대학교 자연과학대학 환경과학과) ;
  • 이수형 (강원대학교 자연과학대학 환경과학과)
  • Received : 2011.09.19
  • Accepted : 2011.10.10
  • Published : 2011.10.25

Abstract

An analytical method for solvent-free determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in water using repetitive membrane extractions coupled to cryofocusing and GC-MS was derived. BTEX compounds that permeated through a nonporous silicone membrane from the aqueous phase and evaporated into the acceptor phase were purged into a cryofocusing trap ($-100^{\circ}C$) with helium gas. The BTEX compounds, thus enriched in the trap, were thermally desorbed into a capillary column GC and detected using an MS. The flow rate of the donor phase (30 mL water) was set at 10 mL/min, and membrane extractions, accomplished by returning the water drained from the extraction module to the sample container, were repeated three times at $20{\pm}2^{\circ}C$. Although recoveries (%) were variable, from the highest for benzene (approximately 80%) to the lowest for ethylbenzene and xylenes (3.5-10%), the method showed satisfactory precision (RSD 2.2-10%) with good-linearity calibration curves ($r^2$ 0.9976-0.9997 in 1-100 ${\mu}g$/L range) for all of the compounds. The method detection limits (MDLs) ranged from 0.16 to 1.8 ${\mu}g$/L. The results showed the method's advantages such as short analysis time and overall simplicity without solvent compared to the conventional techniques.

용매를 사용하지 않고 반복적으로 막 추출한 후 저온농축과 GC-MS로 물 중 BTEX를 분석하는 방법을 시도하였다. 물로부터 비공성막의 silicone 막을 투과한 BTEX를 He 기체를 통해 $-100^{\circ}C$의 저온 농축장치로 보낸 후 열 탈착과 GC-MS로 분석하였다. 물 시료(30 mL)는 10 mL/min로 흘려주었고, 한 번 추출된 시료는 다시 되돌려서 두 번 더 추출하였다. Benzene에 대한 회수율은 가장 높아 약 80%인 반면에, ethylbenzene과 xylenes에 대한 회수율은 3.5-10%로 낮은 편이었다. 그렇지만, RSD는 모두 10% 미만이었고 검량선의 직선성($r^2$)도 0.9976-0.9997로 높은 편이었으며, 방법검출한계도 1.8 ${\mu}g$/L 이었다. 이 방법은 짧은 추출 시간, 용매의 미사용 및 분석의 편의성의 장점을 갖고 있다.

Keywords

References

  1. Hylton, K. and Mitra, S., J. Chromatogr. A, 1152, 199-214 (2007). https://doi.org/10.1016/j.chroma.2006.12.047
  2. Biziuk, M. and Przyjazny, A, J. Chromatogr. A, 733, 417-448 (1996). https://doi.org/10.1016/0021-9673(95)01268-0
  3. Kolb, B., J. Chromatogr. A, 842, 163-205 (1999). https://doi.org/10.1016/S0021-9673(99)00073-4
  4. Louter, A. J. H., Vreuls, J. J. and Brinkman, U. A. Th., J. Chromatogr. A, 842, 391-426 (1999). https://doi.org/10.1016/S0021-9673(99)00211-3
  5. Ouyanga, G. and Pawliszyn, J., Trends Anal. Chem., 25, 692-703 (2006). https://doi.org/10.1016/j.trac.2006.05.005
  6. David, F. and Sandra, P., J. Chromatogr. A, 1152, 54-69 (2007). https://doi.org/10.1016/j.chroma.2007.01.032
  7. Cordero, B. M., Pavon, J. L. P., Pinto, C. G. Laespada, M. E. F., Martinez, R. C. and Gonzalo, E. R., J. Chromatogr. A, 902, 195-204 (2000). https://doi.org/10.1016/S0021-9673(00)00835-9
  8. Blanchard, R. D. and Hardy, J. K., Anal. Chem., 56, 1621-1624 (1984). https://doi.org/10.1021/ac00273a019
  9. Zhang, G.-Z. and Hardy, J. K., J. Environ. Sci. Health, A24, 279-295 (1989).
  10. Blanchard, R. D. and Hardy, J. K., Anal. Chem., 57, 2349-2351 (1985). https://doi.org/10.1021/ac00289a041
  11. Zhang, G.-Z. and Hardy, J. K., J. Environ. Sci. Health, A24, 1011-1024 (1989).
  12. Frantz, D. D. and Hardy, J. K., J. Environ. Sci. Health, A34, 695-704 (1999).
  13. Koller, G., Popp, P., Weingart, K., Hauser, B. and Herrmann, W., Chromatographia, 57, S-229-S-233 (2003).
  14. Pratt, K. F. and Pawliszyn, J., Anal. Chem., 64, 2107-2110 (1992). https://doi.org/10.1021/ac00042a015
  15. Xu, Y. H. and Mitra, S., J. Chromatogr. A, 688, 171-180 (1994). https://doi.org/10.1016/0021-9673(94)00944-9
  16. Hauser, B. and Popp, P., J. Chromatogr. A, 909, 3-21 (2001). https://doi.org/10.1016/S0021-9673(00)00904-3
  17. Sae-Khow, O. and Mitra, S., J. Chromatogr. A, 1217, 2736-2746 (2010). https://doi.org/10.1016/j.chroma.2009.12.043
  18. Maden, A. J. and Hayward, M. J., Anal. Chem., 68, 1805-1811 (1996). https://doi.org/10.1021/ac9509216
  19. Hauser, B. and Popp, P., J. High Resol. Chromatogr., 22, 205-212 (1999). https://doi.org/10.1002/(SICI)1521-4168(19990401)22:4<205::AID-JHRC205>3.0.CO;2-2
  20. Yang, M. J., Harms, S., Luo, Y. Z. and Pawliszyn, J., Anal. Chem., 66, 1339-1346 (1994). https://doi.org/10.1021/ac00080a021
  21. 40 Code of Federal Register Appendix B to Part 136:Definition and Procedure for the Determination of the Method Detection Limit - Revision 1.11 (1994).
  22. United States Environmental Protection Agency Method 524.3: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry - Version 1.0 (2009).

Cited by

  1. Use of flat-sheet membrane extraction with a sorbent interface for solvent-free determination of BTEX in water vol.97, 2012, https://doi.org/10.1016/j.talanta.2012.04.058
  2. Application of flat-sheet membrane extraction to determination of trihalomethanes in chlorinated drinking water vol.70, pp.1, 2015, https://doi.org/10.1134/S1061934815010074