DOI QR코드

DOI QR Code

Acute Toxicity to Peptone Concentrations in the Polychaete Perinereis aibuhitensis under Laboratory Culture

  • Kang, Kyoung-Ho (Department of Aquaculture, Chonnam National University) ;
  • Zhang, Litao (College of Marine Life Sciences, Ocean University of China) ;
  • Ahn, Sam-Young (Department of Environmental Education, Sunchon National University) ;
  • Kahng, Hyung-Yeel (Department of Environmental Education, Sunchon National University) ;
  • Zhang, Zhifeng (College of Marine Life Sciences, Ocean University of China) ;
  • Sui, Zhenghong (College of Marine Life Sciences, Ocean University of China)
  • Received : 2011.05.02
  • Accepted : 2011.08.11
  • Published : 2011.09.30

Abstract

Organic pollution causes eutrophication and dystrophication, which occur when excessive amounts of organic matter enters seawater. Eutrophication can contaminate sediment and harm aquaculture. Polychaeta species have been shown to restore eutrophic sediment. In this study, we used peptone to simulate a eutrophic environment and detect the levels at which eutrophication became toxic to the polychaete Perinereis aibuhitensis. Peptone concentrations were 0, 100, 200, and 500 mg/L. The median lethal concentrations were 950.35 mg/L at 48 h, 340.34 mg/L at 72 h, and 120.22 mg/L at 96 h, which are much higher than those of other aquatic species. Polychaeta species are highly tolerant of eutrophication. During the 15-day long-term experiment, sediment loss on ignition, as well as seawater total organic carbon and total nitrogen all decreased significantly (P<0.05). However, $NH_4^+$ concentration increased with time. Perinereis aibuhitensis slowed the increment of $NH_4^+$ but could not prevent its increase. Our results indicate that this polychaete is helpful in the recovery of seawater and sediment from eutrophication.

Keywords

References

  1. Ahrens MJ, Hertz J, Lamoureux EM, Lopez GR, McElroy AE and Brownawell BJ. 2001. The role of digestive surfactants in determining bioavailability of sediment-bound hydrophobic organic contaminants to 2 deposit-feeding polychaetes. Mar Ecol Prog Ser 212: 145-157. https://doi.org/10.3354/meps212145
  2. Brinkman SF, Woodling JD, Vajda AM and Norris DO. 2009. Chronic toxicity of ammonia to early life stage rainbow trout. Trans Am Fish Soc 138, 433-440. https://doi.org/10.1577/T07-224.1
  3. Cadee GC and Hegeman J. 2002. Phytoplankton in the Marsdiep at the end of the 20th century: 30 years monitoring biomass, primary production, and Phaeocystis blooms. J Sea Res 48, 97-110. https://doi.org/10.1016/S1385-1101(02)00161-2
  4. Cloern JE. 2001. Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210, 223-253. https://doi.org/10.3354/meps210223
  5. Cuny P, Miralles G, Cornet-Barthaux V, Acquaviva M, Stora G, Grossi V and Gilbert F. 2007. Influence of bioturbation by the polychaete Nereis diversicolor on the structure of bacterial communities in oil contaminated coastal sediments. Mar Pollut Bull 54, 452-459. https://doi.org/10.1016/j.marpolbul.2006.12.008
  6. Durou C, Smith BD, Romeo M, Rainbow PS, Mouneyrac C, Mouloud M, Gnassia-Barelli M, Gillet P, Deutsch B and Amiard-Triquet C. 2007. From biomarkers to population responses in Nereis diversicolor: assessment of stress in estuarine ecosystems. Ecotoxicol Environ Saf 66, 402-411. https://doi.org/10.1016/j.ecoenv.2006.02.016
  7. Eisler R and Hennekey RJ. 1977. Acute toxicities of $Cd^{2+}$, $Cr^{+6} Hg^{2+}$, $Ni^{2+}$ and $Zn^{2+}$ to estuarine macrofauna. Arch Environ Contam Toxicol 6, 315-323. https://doi.org/10.1007/BF02097772
  8. Finney DJ. 1971. Probit Analysis. 3rd ed. Cambridge University Press, Cambridge, GB.
  9. Kanda J. 1995. Determination of ammonium in seawater based on the indophenol reaction with o-phenylphenol (OPP). Water Res 29, 2746-2750. https://doi.org/10.1016/0043-1354(95)00149-F
  10. Kang KH, Zhang ZF, Bao ZM, Zhou B, Kang KH, Kim YH and Webster CD. 2010. Effects of clamworm, Perinereis aibuhiteusis, density on acid volatile sulfide, chemical oxygen demand, and loss of ignition in benthic sediment, and on survival of scallop, Chlamys farreri, Spat. J World Aquac Soc 41, 131-138. https://doi.org/10.1111/j.1749-7345.2009.00342.x
  11. Lenhart HJ, Mills DK, Baretta-Bekker H, van Leeuwen SM, van der Molen J, Baretta JW, Blaas M, Desmit X, Kühn W, Lacroix G, Los HJ, Ménesguen A, Neves R, Proctor R, Ruardij P, Skogen MD, Vanhoutte-Brunier A, Villars MT and Wakelin SL. 2010. Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea. J Mar Syst 81, 148-170. https://doi.org/10.1016/j.jmarsys.2009.12.014
  12. Matsushige K, Inamori Y, Mizuochi M, Hosomi M and Sudo R. 1990. The effects of temperature on anaerobic filter treatment for low-strength organic wastewater. Environ Technol 11, 899-910. https://doi.org/10.1080/09593339009384942
  13. Meyer-Reil LA and Köster M. 2000. Eutrophication of marine waters: effects on benthic microbial communities. Mar Pollut Bull 41, 255-263. https://doi.org/10.1016/S0025-326X(00)00114-4
  14. Philippart CJM, Cadee GC, van Raaphorst W and Riegman R. 2000. Long-term phytoplankton-nutrient interactions in a shallow coastal sea: algal community structure, nutrient budgets, and denitrifi cation potential. Limnol Oceanogr 45, 131-144. https://doi.org/10.4319/lo.2000.45.1.0131
  15. Pinto W, Aragao C, Soares F, Dinis MT and Conceicao LEC. 2007. Growth, stress response and free amino acid levels in Senegalese sole (Solea senegalensis Kaup 1858) chronically exposed to exogenous ammonia. Aquac Res 38, 1198-1204. https://doi.org/10.1111/j.1365-2109.2007.01788.x
  16. Rodrigues RV, Schwarz MH, Delbos BC and Sampaio LA. 2007. Acute toxicity and sublethal effects of ammonia and nitrite for juvenile cobia Rachycentron canadum. Aquaculture 271, 553-557. https://doi.org/10.1016/j.aquaculture.2007.06.009
  17. Scaps P, Demuynck S, Descamps M and Dhainaut A. 1997. Effects of organophosphate and carbamate pesticides on acetylcholinesterase and choline acetyltransferase activities of the polychaete Nereis diversicolor. Arch Environ Contam Toxicol 33, 203-208. https://doi.org/10.1007/s002449900244
  18. Shikano S and Kawabata Z. 2000. Effect at the ecosystem level of elevated atmospheric $CO_2in$ an aquatic microcosm. Hydrobiologia 436, 209-216. https://doi.org/10.1023/A:1026586303765
  19. Shikano S and Kurihara Y. 1988. Analysis of factors controlling responses of an aquatic microcosm to organic loading. Hydrobiologia 169, 251-257. https://doi.org/10.1007/BF00007316
  20. Spencer P, Pollock R and Dube M. 2008. Effects of un-ionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus). Aquat Toxicol 90, 300-309. https://doi.org/10.1016/j.aquatox.2008.08.017
  21. Thurston RV, Russo RC and Smith CE. 1978. Acute toxicity of ammonia and nitrite to cutthroat trout fry. Trans Am Fish Soc 107, 361-368. https://doi.org/10.1577/1548-8659(1978)107<361:ATOAAN>2.0.CO;2
  22. Yamaguchi R and Machida T. 1968. Colorimetric determination of ammonia. I. A new spectrophotometric method for the determination of ammonia using o-phenylphenol. Yakugaku Zasshi 88, 1383-1387. https://doi.org/10.1248/yakushi1947.88.11_1383
  23. Yang L, Chang YF and Chou MS. 1999. Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia. J Hazard Mater 69, 111-126. https://doi.org/10.1016/S0304-3894(99)00098-9