DOI QR코드

DOI QR Code

Comparison of Two Parametric Estimators for the Entropy of the Lognormal Distribution

로그정규분포의 엔트로피에 대한 두 모수적 추정량의 비교

  • Choi, Byung-Jin (Department of Applied Information Statistics, Kyonggi University)
  • 최병진 (경기대학교 응용정보통계학과)
  • Received : 20110600
  • Accepted : 20110800
  • Published : 2011.09.30

Abstract

This paper proposes two parametric entropy estimators, the minimum variance unbiased estimator and the maximum likelihood estimator, for the lognormal distribution for a comparison of the properties of the two estimators. The variances of both estimators are derived. The influence of the bias of the maximum likelihood estimator on estimation is analytically revealed. The distributions of the proposed estimators obtained by the delta approximation method are also presented. Performance comparisons are made with the two estimators. The following observations are made from the results. The MSE efficacy of the minimum variance unbiased estimator appears consistently high and increases rapidly as the sample size and variance, n and ${\sigma}^2$, become simultaneously small. To conclude, the minimum variance unbiased estimator outperforms the maximum likelihood estimator.

본 논문에서는 로그정규분포의 엔트로피에 대한 모수적 추정량으로 최소분산비편향추정량과 최대가능도추정량을 제시하고 성질을 비교한다. 각 추정량의 분산을 유도해서 일치성을 밝히고 최대가능도 추정량의 편향이 추정에 미치는 영향을 분석한다. 델타근사방법을 이용해서 얻은 추정량의 분포를 제시하고 적합도 평가를 통한 유도한 분포의 확증을 위해서 모의실험을 수행한다. 평균제곱오차에 의한 상대적 효율성에 대한 조사를 통해 두 추정량의 성능을 비교한다. 모의실험의 결과에서 최소분산비편향추정량은 최대가능도 추정량보다 더 좋은 효율을 보이는 것으로 나타나며, 특히 표본크기와 분산이 동시에 작아짐에 따라 효율이 점점 높아지게 되어 월등히 나은 성능을 발휘함을 볼 수 있다.

Keywords

References

  1. Aitchison, J. and Brown, J. A. C. (1957). The Lognormal Distribution, Cambridge University Press, Cambridge.
  2. Burbea, J. and Rao, C. R. (1982). Entropy differential metric, distance and divergence measures in probability spaces: A unified approach, Journal of Multivariate Analysis, 12, 576-579. https://doi.org/10.1016/0047-259X(82)90065-3
  3. Crow, E. L. and Shimizu, K. (1988). Lognormal Distributions: Theory and Applications, Marcel Dekker, New York.
  4. Davies, G. R. (1929). The analysis of frequency distributions, Journal of the American Statistical Association, 24, 467-480. https://doi.org/10.2307/2277081
  5. Finney, D. J. (1941). On the distribution of a variate whose logarithmic is normally distributed, Journal of the Royal Statistical Society, Series B, 7, 155-161. https://doi.org/10.2307/2983663
  6. Galton, F. (1879). The geometric mean in vital and social statistics, Proceedings of the Royal Society of London, 29, 965-967. https://doi.org/10.1098/rspl.1879.0060
  7. Havrda, J. and Charvat, F. (1967). Quantification method in classification processes: Concept of structural $\alpha$-entropy, Kybernetika, 3, 30-35.
  8. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Volume 1, John Wiley & Sons, New York.
  9. Kapteyn, J. C. (1903). Skew Frequency Curves in Biology and Statistics, Astronomical Laboratory Noordhoff, Groningen.
  10. Kapteyn, J. C. and van Uven, M. J. (1916). Skew Frequency Curves in Biology and Statistics, Hotsema Brothers, Groningen.
  11. Kapur, J. N. and Kesavan, H. K. (1992). Entropy Optimization Principles with Applications, Academic Press, San Diego.
  12. Koopmans, L. H., Owen, D. B. and Rosenblatt, J. I. (1964). Confidence intervals for the coefficient of variation for the normal and lognormal distributions, Biometrika, 51, 25-32. https://doi.org/10.1093/biomet/51.1-2.25
  13. Kullback, S. and Leibler, R. A. (1951). On information and sufficiency, The Annals of Mathematical Statistics, 22, 79-86. https://doi.org/10.1214/aoms/1177729694
  14. Nakamura, T. (1991). Existence of maximum likelihood estimates for interval-censored data from some three-parameter models with a shift origin, Journal of the Royal Statistical Society, Series B, 53, 211-220.
  15. Nydell, S. (1919). The mean errors of the characteristics in logarithmic-normal distribution, Skandinavisk Aktuarietidskrift, 1, 134-144.
  16. Olshen, A. C. (1937). Transformations of the Pearson Type III distributions, The Annals of Mathematical Statistics, 8, 176-200. https://doi.org/10.1214/aoms/1177732309
  17. Shannon, C. E. (1948). A mathematical theory of communication, Bell System Technical Journal, 27, 379-423, 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  18. Soofi, E. S. and Retzer, J. J. (2002). Information indices: Unification and applications, Journal of Econometrics, 107, 17-40. https://doi.org/10.1016/S0304-4076(01)00111-7
  19. Ullah, A. (1996). Entropy, divergence and distance measures with econometric applications, Journal of Statistical Planning and Inference, 49, 137-162. https://doi.org/10.1016/0378-3758(95)00034-8
  20. Wu, C. Y. (1966). The types of limit distribution for some terms of variational series, Scientia Sinica, 15, 745-762.