• Title/Summary/Keyword: parametric entropy estimator

Search Result 2, Processing Time 0.017 seconds

Comparison of Two Parametric Estimators for the Entropy of the Lognormal Distribution (로그정규분포의 엔트로피에 대한 두 모수적 추정량의 비교)

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.625-636
    • /
    • 2011
  • This paper proposes two parametric entropy estimators, the minimum variance unbiased estimator and the maximum likelihood estimator, for the lognormal distribution for a comparison of the properties of the two estimators. The variances of both estimators are derived. The influence of the bias of the maximum likelihood estimator on estimation is analytically revealed. The distributions of the proposed estimators obtained by the delta approximation method are also presented. Performance comparisons are made with the two estimators. The following observations are made from the results. The MSE efficacy of the minimum variance unbiased estimator appears consistently high and increases rapidly as the sample size and variance, n and ${\sigma}^2$, become simultaneously small. To conclude, the minimum variance unbiased estimator outperforms the maximum likelihood estimator.

Goodness-of-fit test for normal distribution based on parametric and nonparametric entropy estimators (모수적 엔트로피 추정량과 비모수적 엔트로피 추정량에 기초한 정규분포에 대한 적합도 검정)

  • Choi, Byungjin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.847-856
    • /
    • 2013
  • In this paper, we deal with testing goodness-of-fit for normal distribution based on parametric and nonparametric entropy estimators. The minimum variance unbiased estimator for the entropy of the normal distribution is derived as a parametric entropy estimator to be used for the construction of a test statistic. For a nonparametric entropy estimator of a data-generating distribution under the alternative hypothesis sample entropy and its modifications are used. The critical values of the proposed tests are estimated by Monte Carlo simulations and presented in a tabular form. The performance of the proposed tests under some selected alternatives are investigated by means of simulations. The results report that the proposed tests have better power than the previous entropy-based test by Vasicek (1976). In applications, the new tests are expected to be used as a competitive tool for testing normality.