DOI QR코드

DOI QR Code

Preparation and Characterization of Silver Nanoparticles Embedded in Silica Sol Particles

  • Kang, Byung-Kyu (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University) ;
  • Son, Dong-Min (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University) ;
  • Kim, You-Hyuk (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University)
  • Received : 2011.07.02
  • Accepted : 2011.08.22
  • Published : 2011.10.20

Abstract

Silver nanoparticles coated with silica can be obtained by the reduction of $AgNO_3$ with hydrazine in the presence of NaOH-stabilized, active silicic acid (polysilicic acid). The size of the silver nanoparticles and the silica shell thicknesses were affected by varying the hydrazine content, the active silicic acid content and the experimental method (e.g. hydrothermal method). Typically, silver nanoparticles sized around 40 nm were aggregated, connected by silica. The presence of peaks centered around 400 nm in UV-vis spectra corresponds to the surface plasmon resonance of silver nanoparticles. The size of the aggregated silver nanoparticles increased with increasing hydrazine concentration. Under hydrothermal conditions at $150^{\circ}C$ the formation of individual silica particles was observed and the sizes of the silver nanoparticles were reduced. The hydrothermal treatment of silver nanoparticles at $180^{\circ}C$ gives a well-defined Ag@$SiO_2$ core-shell in aggregated silica sol particles. The absorption band observed at around 412 nm were red-shifted with respect to the uncoated silver nanoparticles (${\lambda}_{max}$ = 399 nm) due to the larger refractive index of silica compared to that of water. The formation of silver nanoparticles coated with silica is confirmed by UV-visible absorption spectra, transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS) data.

Keywords

References

  1. Muniz-Miranda, M. J. Raman Spectrosc. 2002, 33, 295. https://doi.org/10.1002/jrs.855
  2. Halvorson, R. A.; Vikesland, P. J. Environ. Sci. Technol. 2010, 44, 7749. https://doi.org/10.1021/es101228z
  3. Li, X.; Zhang, J.; Xu, W.; Jia, H.; Wang, X.; Yang, B.; Zhao, B.; Li, B., Ozaki, Y. Langmuir 2003, 19, 4285. https://doi.org/10.1021/la0341815
  4. Gryczynski, I.; Malicka, J.; Shen, Y. B.; Gryczynski, Z.; Lakowicz, J. R. J. Phys. Chem. B 2002, 106, 2191. https://doi.org/10.1021/jp013013n
  5. Richards, R. Surface and Nanomolecular Catalysis; CRC press: Boca Raton, FL, 2006; p 405-407.
  6. Mahltig, B.; Gutmann, E.; Reibold, M.; Meyer, D. C.; Bottcher, H. J. Sol-Gel Sci. Techol. 2009, 51, 204. https://doi.org/10.1007/s10971-009-1972-8
  7. Sotirioua, G. A.; Teleki, Camenzind, A.; Krumeicha, F.; Meyerb, A.; Pankeb, S.; Pratsinis, S. E. Chem. Eng. J. 2011, 170, 547. https://doi.org/10.1016/j.cej.2011.01.099
  8. Manikam, V. R.; Cheong, K. Y.; Razak, K. A. Mater. Sci. Eng. B 2011, 176, 187. https://doi.org/10.1016/j.mseb.2010.11.006
  9. Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M. Sci. Tot. Environ. 2010, 408, 999. https://doi.org/10.1016/j.scitotenv.2009.11.003
  10. Kawashita, M.; Tsuneyama, S.; Miyaji, F.; Kokubo, T.; Kozuka, H.; Yamamoto, K. Biomaterials 2000, 21, 393. https://doi.org/10.1016/S0142-9612(99)00201-X
  11. Mahltig, B.; Fiedler, D.; BOttcher, H. J. Sol-Gel Sci. Techol. 2004, 32, 219. https://doi.org/10.1007/s10971-004-5791-7
  12. Mulvaney, P.; Liz-Marzan, L. M.; Giersig, M.; Ung, T. J. Mater. Chem. 2000, 10, 1259. https://doi.org/10.1039/b000136h
  13. Lakowicz, J. R. Anal. Biochem. 2005, 337, 171. https://doi.org/10.1016/j.ab.2004.11.026
  14. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Langmuir 1996, 12, 4329. https://doi.org/10.1021/la9601871
  15. Yin, Y.; Lu, Y.; Sun, Y.; Xia, Y. Nano Lett. 2002, 2, 427. https://doi.org/10.1021/nl025508+
  16. Lu, Y.; Yin, Y.; Li, Z.-Y.; Xia, Y. Nano Lett. 2002, 2, 785. https://doi.org/10.1021/nl025598i
  17. Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzan, L. M. J. Colloid Interface Sci. 2005, 283, 392. https://doi.org/10.1016/j.jcis.2004.08.184
  18. Bergna, H. E.; Roberts, W. O. Colloidal Silica: Fundamentals and Applications; CRC press: Boca Raton, FL, 2005; p 47-56.
  19. Pourbaix, M. Atlas of Electrochemical Equlibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, TX, 1974; p 393.
  20. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; John Wiley and Sons: New York, 1980; p 418.
  21. Sbrana, G.; Neto, N.; Muniz-Miranda, M.; Nocentini, M. J. Phys. Chem. 1990, 94, 3706. https://doi.org/10.1021/j100372a064
  22. Muniz-Miranda, M.; Neto, N.; Sbrana, G. J. Mol. Struct. 1988, 174, 351. https://doi.org/10.1016/0022-2860(88)80183-2
  23. Muniz-Miranda, M. Colloids Surf. A 2003, 217, 185. https://doi.org/10.1016/S0927-7757(02)00575-7
  24. Van Hyning, D. L.; Klemperer, W. G.; Zukoski, C. F Langmuir 2001, 17, 3128. https://doi.org/10.1021/la000856h
  25. Kobayashi, Y.; Correa-Duarte, M. A.; Liz-Marzan, L. M. Langmuir 2001, 17, 6375. https://doi.org/10.1021/la010736p
  26. Moores, A.; Goettmann, F. New J. Chem. 2006, 30, 1121. https://doi.org/10.1039/b604038c
  27. Liu, Y.; Liu, C.-Y.; Chen, L.-B.; Zhang, Z.-Y J. Colloid Interface Sci. 2003, 257, 188. https://doi.org/10.1016/S0021-9797(02)00027-9
  28. Underwood, S.; Mulvaney, P. Langmuir 1994, 10, 3427. https://doi.org/10.1021/la00022a011
  29. Matthews, A. Am. Mineralogist 1976, 61, 419.
  30. Oguri, Y.; Riman, R. E.; Bowen, H. K. J. Mater. Sci. 1988, 23, 2897. https://doi.org/10.1007/BF00547465
  31. Kondo, M.; Shinozaki, K.; Ooki, R.; Mizutani, N. J. Ceram. Soc. Jpn. 1994, 102, 742. https://doi.org/10.2109/jcersj.102.742
  32. Watanabe, Y.; Ando, M. European Patent Appl. Publication; No. A2,0335195, 1989.
  33. Wang, J.; Sugawara, A.; Shimojima, A.; Okubo, T. Langmuir 2010, 26, 18491. https://doi.org/10.1021/la103564p

Cited by

  1. Recent Progress in Rapid Sintering of Nanosilver for Electronics Applications vol.9, pp.7, 2018, https://doi.org/10.3390/mi9070346