Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.10.3707

Preparation and Characterization of Silver Nanoparticles Embedded in Silica Sol Particles  

Kang, Byung-Kyu (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University)
Son, Dong-Min (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University)
Kim, You-Hyuk (Department of Chemistry and Institute of Basic Sciences, College of Advanced Sciences, Dankook University)
Publication Information
Abstract
Silver nanoparticles coated with silica can be obtained by the reduction of $AgNO_3$ with hydrazine in the presence of NaOH-stabilized, active silicic acid (polysilicic acid). The size of the silver nanoparticles and the silica shell thicknesses were affected by varying the hydrazine content, the active silicic acid content and the experimental method (e.g. hydrothermal method). Typically, silver nanoparticles sized around 40 nm were aggregated, connected by silica. The presence of peaks centered around 400 nm in UV-vis spectra corresponds to the surface plasmon resonance of silver nanoparticles. The size of the aggregated silver nanoparticles increased with increasing hydrazine concentration. Under hydrothermal conditions at $150^{\circ}C$ the formation of individual silica particles was observed and the sizes of the silver nanoparticles were reduced. The hydrothermal treatment of silver nanoparticles at $180^{\circ}C$ gives a well-defined Ag@$SiO_2$ core-shell in aggregated silica sol particles. The absorption band observed at around 412 nm were red-shifted with respect to the uncoated silver nanoparticles (${\lambda}_{max}$ = 399 nm) due to the larger refractive index of silica compared to that of water. The formation of silver nanoparticles coated with silica is confirmed by UV-visible absorption spectra, transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS) data.
Keywords
Silver nanoparticles; Active silicic acid; Hydrothermal method; Ag@$SiO_2$; TEM;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Kobayashi, Y.; Correa-Duarte, M. A.; Liz-Marzan, L. M. Langmuir 2001, 17, 6375.   DOI   ScienceOn
2 Moores, A.; Goettmann, F. New J. Chem. 2006, 30, 1121.   DOI   ScienceOn
3 Liu, Y.; Liu, C.-Y.; Chen, L.-B.; Zhang, Z.-Y J. Colloid Interface Sci. 2003, 257, 188.   DOI   ScienceOn
4 Underwood, S.; Mulvaney, P. Langmuir 1994, 10, 3427.   DOI   ScienceOn
5 Matthews, A. Am. Mineralogist 1976, 61, 419.
6 Oguri, Y.; Riman, R. E.; Bowen, H. K. J. Mater. Sci. 1988, 23, 2897.   DOI
7 Kondo, M.; Shinozaki, K.; Ooki, R.; Mizutani, N. J. Ceram. Soc. Jpn. 1994, 102, 742.   DOI
8 Watanabe, Y.; Ando, M. European Patent Appl. Publication; No. A2,0335195, 1989.
9 Wang, J.; Sugawara, A.; Shimojima, A.; Okubo, T. Langmuir 2010, 26, 18491.   DOI   ScienceOn
10 Kawashita, M.; Tsuneyama, S.; Miyaji, F.; Kokubo, T.; Kozuka, H.; Yamamoto, K. Biomaterials 2000, 21, 393.   DOI   ScienceOn
11 Mahltig, B.; Fiedler, D.; BOttcher, H. J. Sol-Gel Sci. Techol. 2004, 32, 219.   DOI
12 Mulvaney, P.; Liz-Marzan, L. M.; Giersig, M.; Ung, T. J. Mater. Chem. 2000, 10, 1259.   DOI   ScienceOn
13 Lakowicz, J. R. Anal. Biochem. 2005, 337, 171.   DOI   ScienceOn
14 Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Langmuir 1996, 12, 4329.   DOI   ScienceOn
15 Yin, Y.; Lu, Y.; Sun, Y.; Xia, Y. Nano Lett. 2002, 2, 427.   DOI   ScienceOn
16 Lu, Y.; Yin, Y.; Li, Z.-Y.; Xia, Y. Nano Lett. 2002, 2, 785.   DOI   ScienceOn
17 Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzan, L. M. J. Colloid Interface Sci. 2005, 283, 392.   DOI   ScienceOn
18 Bergna, H. E.; Roberts, W. O. Colloidal Silica: Fundamentals and Applications; CRC press: Boca Raton, FL, 2005; p 47-56.
19 Pourbaix, M. Atlas of Electrochemical Equlibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, TX, 1974; p 393.
20 Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; John Wiley and Sons: New York, 1980; p 418.
21 Sbrana, G.; Neto, N.; Muniz-Miranda, M.; Nocentini, M. J. Phys. Chem. 1990, 94, 3706.   DOI
22 Muniz-Miranda, M.; Neto, N.; Sbrana, G. J. Mol. Struct. 1988, 174, 351.   DOI   ScienceOn
23 Muniz-Miranda, M. Colloids Surf. A 2003, 217, 185.   DOI   ScienceOn
24 Van Hyning, D. L.; Klemperer, W. G.; Zukoski, C. F Langmuir 2001, 17, 3128.   DOI   ScienceOn
25 Muniz-Miranda, M. J. Raman Spectrosc. 2002, 33, 295.   DOI   ScienceOn
26 Halvorson, R. A.; Vikesland, P. J. Environ. Sci. Technol. 2010, 44, 7749.   DOI   ScienceOn
27 Li, X.; Zhang, J.; Xu, W.; Jia, H.; Wang, X.; Yang, B.; Zhao, B.; Li, B., Ozaki, Y. Langmuir 2003, 19, 4285.   DOI   ScienceOn
28 Mahltig, B.; Gutmann, E.; Reibold, M.; Meyer, D. C.; Bottcher, H. J. Sol-Gel Sci. Techol. 2009, 51, 204.   DOI
29 Gryczynski, I.; Malicka, J.; Shen, Y. B.; Gryczynski, Z.; Lakowicz, J. R. J. Phys. Chem. B 2002, 106, 2191.   DOI   ScienceOn
30 Richards, R. Surface and Nanomolecular Catalysis; CRC press: Boca Raton, FL, 2006; p 405-407.
31 Sotirioua, G. A.; Teleki, Camenzind, A.; Krumeicha, F.; Meyerb, A.; Pankeb, S.; Pratsinis, S. E. Chem. Eng. J. 2011, 170, 547.   DOI   ScienceOn
32 Manikam, V. R.; Cheong, K. Y.; Razak, K. A. Mater. Sci. Eng. B 2011, 176, 187.   DOI   ScienceOn
33 Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M. Sci. Tot. Environ. 2010, 408, 999.   DOI   ScienceOn