DOI QR코드

DOI QR Code

An NMR Study on the Conformation of Substance P in Acidic Bicelles

  • Baek, Seung-Bin (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lim, Sung-Chul (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Hyeong-Ju (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Hee-Cheon (Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Chul (Department of Chemistry, Hannam University)
  • Received : 2011.03.28
  • Accepted : 2011.08.22
  • Published : 2011.10.20

Abstract

The conformation of a neuropeptide, substance P (SP), in isotropic (q = 0.5) acidic bicelles was investigated using two-dimensional NMR techniques. By the nuclear Overhauser effect (NOE) cross peaks between SP and long-chain lipid molecules SP was probed to bind on the flat surface of the disc-like bicelles. Structural analysis of NMR data indicated that the helical conformation of SP extended to the C-terminal region of Leu10 as well as in the mid-region from Pro4 to Phe8. As compared with the conformations of SP bound on the sodium dodecylsulfate (SDS) or the dodecylphosphocholine (DPC) micelles with curved surfaces, the surface curvature of the membrane mimics was found to be one of the major factors inducing the biologically relevant conformation of SP. The negative surface charge of the membrane is also a key factor inducing both the binding of SP on the membrane and its biologically active structure.

Keywords

References

  1. Hokfelt, T.; Pernow, B.; Wahren, J. Journal of Internal Medicine 2001, 249, 27.
  2. Harrison, S.; Geppetti, P. The International Journal of Biochemistry & Cell Biology 2001, 33, 555. https://doi.org/10.1016/S1357-2725(01)00031-0
  3. Rolka, K.; Erne, D.; Schwyzer, R. Helvetica Chimica Acta 1986, 69, 1798. https://doi.org/10.1002/hlca.19860690803
  4. Williams, R. W.; Weaver, J. L. The Journal of Biological Chemistry 1990, 265, 2505.
  5. Erne, D.; Rolka, K.; Schwyzer, R. Helvetica Chimica Acta 1986, 69, 1807. https://doi.org/10.1002/hlca.19860690804
  6. Chassaing, G.; Convert, O.; Lavielle, S. European Journal of Biochemistry 1986, 154, 77. https://doi.org/10.1111/j.1432-1033.1986.tb09361.x
  7. Sumner, S. C. J.; Gallagher, K. S.; Davis, D. G.; Covell, D. G.; Jernigan, R. L.; Ferretti, J. A. Journal of Biomolecular Structure & Dynamics 1990, 8, 687. https://doi.org/10.1080/07391102.1990.10507836
  8. Keire, D. A.; Fletcher, T. G. Biophysical Journal 1996, 70, 1716. https://doi.org/10.1016/S0006-3495(96)79734-5
  9. Cowsik, S. M.; Lucke, C.; Ruterjans, H. Journal of Biomolecular Structure & Dynamics 1997, 15, 27. https://doi.org/10.1080/07391102.1997.10508942
  10. Young, J. K.; Anklin, C.; Hicks, R. P. Biopolymers 1994, 34, 1449. https://doi.org/10.1002/bip.360341102
  11. Auge, S.; Bersch, B.; Tropis, M.; Milon, A. Biopolymers 2000, 54, 297. https://doi.org/10.1002/1097-0282(20001015)54:5<297::AID-BIP10>3.0.CO;2-9
  12. Corcho, F. J.; Salvatella, X.; Canto, J.; Giralt, E.; Perez, J. J. Journal of Peptide Science 2007, 13, 728. https://doi.org/10.1002/psc.880
  13. Beard, D. J.; Perrine, S. A.; Phillips, E.; Hoque, S.; Conerly, S.; Tichenor, C.; Simmons, M. A.; Young, J. K. Journal of Medicinal Chemistry 2007, 50, 6501. https://doi.org/10.1021/jm070577s
  14. Wymore, T.; Wong, T. C. Biophysical Journal 1999, 76, 1199. https://doi.org/10.1016/S0006-3495(99)77284-X
  15. Wong, T. C.; Gao, X. F. Biopolymers 1998, 45, 395. https://doi.org/10.1002/(SICI)1097-0282(19980415)45:5<395::AID-BIP7>3.0.CO;2-G
  16. Prosser, R. S.; Evanics, F.; Kitevski, J. L.; Al-Abdul-Wahid, M. S. Biochemistry 2006, 45, 8453. https://doi.org/10.1021/bi060615u
  17. Andersson, A.; Maler, L. Langmuir 2006, 22, 2447. https://doi.org/10.1021/la053177l
  18. Vold, R. R.; Prosser, R. S.; Deese, A. J. Journal of Biomolecular NMR 1997, 9, 329. https://doi.org/10.1023/A:1018643312309
  19. Struppe, J.; Whiles, J. A.; Vold, R. R. Biophysical Journal 2000, 78, 281. https://doi.org/10.1016/S0006-3495(00)76591-X
  20. Andersson, A.; Maler, L. Journal of Biomolecular NMR 2002, 24, 103. https://doi.org/10.1023/A:1020902915969
  21. Matsumori, N.; Morooka, A.; Murata, M. Journal of Medicinal Chemistry 2006, 49, 3501. https://doi.org/10.1021/jm051210v
  22. Matsumori, N.; Morooka, A.; Murata, M. Journal of the American Chemical Society 2007, 129, 14989. https://doi.org/10.1021/ja075024l
  23. Chou, J. J.; Kaufman, J. D.; Stahl, S. J.; Wingfield, P. T.; Bax, A. Journal of the American Chemical Society 2002, 124, 2450. https://doi.org/10.1021/ja017875d
  24. Bax, A.; Davis, D. G. Journal of Magnetic Resonance 1985, 65, 355.
  25. Kumar, A.; Ernst, R. R.; Wuthrich, K. Biochemical and Biophysical Research Communications 1980, 95, 1. https://doi.org/10.1016/0006-291X(80)90695-6
  26. Piotto, M.; Saudek, V.; Sklenar, V. Journal of Biomolecular NMR 1992, 2, 661. https://doi.org/10.1007/BF02192855
  27. Goddard, T. D.; Kneller, D. G.; 3.0. ed.; University of California: San Francisco, 2001.
  28. Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley & Sons, Inc.: New York, 1986.
  29. Wishart, D. S.; Sykes, B. D. Methods in Enzymology 1994, 239, 363. https://doi.org/10.1016/S0076-6879(94)39014-2
  30. Wishart, D. S.; Sykes, B. D.; Richards, F. M. Biochemistry 1992, 31, 1647. https://doi.org/10.1021/bi00121a010
  31. Gayen, A.; Goswami, S. K.; Mukhopadhyay, C. Biochimica et Biophysica Acta - Biomembranes 2011, 1808, 127. https://doi.org/10.1016/j.bbamem.2010.09.023

Cited by

  1. Mapping Molecular Perturbations by a New Form of Two-Dimensional Spectroscopy vol.135, pp.8, 2013, https://doi.org/10.1021/ja310107e
  2. Thermodynamics of Partitioning of Substance P in Isotropic Acidic Bicelles vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.743
  3. Bicelles and nanodiscs for biophysical chemistry vol.1863, pp.1, 2011, https://doi.org/10.1016/j.bbamem.2020.183478