• Title/Summary/Keyword: NOESY

Search Result 66, Processing Time 0.03 seconds

Evaluations of Spectral Analysis of in vitro 2D-COSY and 2D-NOESY on Human Brain Metabolites (인체 뇌 대사물질에서의 In vitro 2D-COSY와 2D-NOESY 스펙트럼 분석 평가)

  • Choe, Bo-Young;Woo, Dong-Cheol;Kim, Sang-Young;Choi, Chi-Bong;Lee, Sung-Im;Kim, Eun-Hee;Hong, Kwan-Soo;Jeon, Young-Ho;Cheong, Chae-Joon;Kim, Sang-Soo;Lim, Hyang-Sook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.8-19
    • /
    • 2008
  • Purpose : To investigate the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar nuclear Overhauser effect/enhancement (NOE) interaction through 2D- correlation spectroscopy (COSY) and 2D- NOE spectroscopy (NOESY) techniques. Materials and Methods : All 2D experiments were performed on Bruker Avance 500 (11.8 T) with the zshield gradient triple resonance cryoprobe at 298 K. Human brain metabolites were prepared with 10% $D_2O$. Two-dimensional spectra with 2048 data points contains 320 free induction decay (FID) averaging. Repetition delay was 2 sec. The Top Spin 2.0 software was used for post-processing. Total 7 metabolites such as N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), lutamine (Gln), glutamate (Glu), myo-inositol (Ins), and lactate (Lac) were included for major target metabolites. Results : Symmetrical 2D-COSY and 2D-NOESY pectra were successfully acquired: COSY cross peaks were observed in the only 1.0-4.5 ppm, however, NOESY cross peaks were observed in the 1.0-4.5 ppm and 7.9 ppm. From the result of the 2-D COSY data, cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methylene protons (CH2(3,$H{\alpha}$)) at 2.50ppm and methylene protons ($CH_2$,(3,$H_B$)) at 2.70 ppm were observed in NAA. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. From the result of 2-D NOESY data, cross peaks between the NH proton at 8.00 ppm and methyl protons ($CH_3$) were observed in NAA. Cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methyl protons (CH3) at 3.03 ppm and methylene protons (CH2) at 3.93 ppm were observed in Cr. Cross peaks between the methylene protons ($CH_2$(3)) at 2.11 ppm and methylene protons ($CH_2$(4)) at 2.35 ppm, and between the methylene protons($CH_2$ (3)) at 2.11 ppm and methine proton (CH(2)) at 3.76 ppm were observed in Glu. Cross peaks between the methylene protons (CH2 (3)) at 2.14 ppm and methine proton (CH(2)) at 3.79 ppm were observed in Gln. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. Conclusion : The present study demonstrated that in vitro 2D-COSY and NOESY represented the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar NOE interaction. This study could aid in better understanding the interactions between human brain metabolites in vivo 2DCOSY study.

  • PDF

Two Dimensional Transfer Modes in $CH_2$ Spin System

  • NamGoong Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.59-73
    • /
    • 2006
  • Spin-lattice relaxation pathway of $CH_2$ spin system by two dimensional NOESY sequence has been discussed. Two-dimensional spectra governed by dipolar relaxation mechanism were simulated in term of transfer mode, the generalization of conventionally used magnetization mode in one dimension. The transfer matrix directly related to the Redfield relaxation matrix can be constructed by the multiplet of transfer mode. The observable relaxation transfer modes causes to variation of the off-diagonal signal intensity of phase sensitive NOESY spectra from which variable spectral density can be extracted with simple group theoretical calculation. The variation of the J-coupling peak intensity as a function of the mixing time in 2-D spectra for $n-Undecane-5-^{13}C$ and Bromoacetic $2-^{13}C$ acid has been theoretically traced.

  • PDF

Solution-State Structure of Native Coenzyme F430 by NMR Methods

  • 원호식;Karl D. Olson;박지석;Ralph S. Wolfe;Dennis R. Hare;Michael F. Summers
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.649-653
    • /
    • 1995
  • Solution-state structure of native F430 was determined by using NMR methods and NMR-based distance geometry (DG) computations. Structures were generated with loose NOE-derived interproton distance restraints (2.0-2.5 Å, 2.0-3.5 Å and 2.0-4.5 Å for strong, medium, and weak NOE cross-peak intensities, respectively). 2D NOESY back-calculations of structures were subsequently carried out for establishing the consistence between experimental data and DG-model structures. The back-calculated 2D NOESY spectra of resulting DG structures were well consistent with experimental 2D NOESY spectra. Superposition of 20 independent structures with macrocyclic ring atoms and all atoms of F430 afforded pairwise root mean square deviations (RMSD) of 0.025-0.125 Å and 0.64-1.3 Å, respectively. The macrocyclic rings of structures are well converged to a unique conformation with saddle-shaped deformation whereas most of side chains are not converged. The average dihedral angle (N1-N2-N3-N4, 27.78±1.50°) of 20 DG-structures exhibits that the macrocyclic ring conformation is puckered as much as 12,13-diepimeric F430 (28.75±4.07°).

Complete Assignment of $^{1}H$ and $^{13}C$-NMR Signals for (20S) and (20R)-Protopanaxadiol by 2D-NMR Techniques (2D-NMR 기법을 이용한 (20S)와 (20R)-Protopanaxadiol의 $^{1}H$- 및 $^{13}C$-NMR 완전 동정)

  • 백남인;김동선
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 1995
  • (20S)- and (20R)-protopanaxadiol were prepared from crude ginseng saponin by chemical treatment. The $^{1}H$- and $^{13}C$-NMR signals of these compounds were fully assigned by various NMR techniques such as DEPT, 1H-1H COSY, HMQC, HMBC and NOESY.

  • PDF

An Optimization of the 3D $^{1}H-^{15}N-^{1}H$ TOCSY-HSQC and NOESY-HSQC Experiments Using Sensitivity Enhancement with Gradient Selection

  • Jeon, Young-Ho;Kim, Kuk-Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.2
    • /
    • pp.103-111
    • /
    • 1997
  • Proper pulse sequences and experimental optimization for the 3D 15N edited TOCSY and NOESY spectra were described. Using sensitivity enhancement approach with coherent selection by pulsed field gradients described by Kay and co-workers, an considerable gain in sensitivity was achieved. The sensitivity was also improved by minimal water saturation using water flip-back pulse. Among the three types of TOCSY mixing pulse, named MLEV-17, DIPSI-2rc, DIPSI-2rc sequence gave the most sensitive spectrum. These results suggest an appropriate pulse sequence for for those 3D experiments for large proteins.

  • PDF

Sensitivity Enhancement of Methyl-TROSY by Longitudinal 1H Relaxation Optimization

  • Lee, Dong-Han;Vijayan, Vinesh;Montaville, Pierre;Becker, Stefan;Griesinger, Christian
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • The NMR detection of methyl groups is of keen interest because they provide the long-range distance information required to establish global folds of high molecular weight proteins. Using longitudinal $^1H$ relaxation optimization, we achieve a gain in sensitivity of approximately 1.6-fold in the methyl-TROSY and its NOESY experiments for the 38 kDa protein mitogen activated protein kinase p38 in its fully protonated and $^{13}C$ and $^{15}N$ labeled state.

Absolute Configuration of ${\beta}$-agarofuran nucleus of euojaponine C by CD exciton chirality method

  • Ryu, Jae-Ha;Ryu, Shi-Yong;Han, Yong-Nam;Han, Byung-Hoon
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.76-79
    • /
    • 1997
  • A new celastraceae alkaloid, euojaponine C has been isolated from the methanol extract of the root bark of Euonymus japonica. With the relative stereochemistry of euojaponine C established by NOESY data, the absolute stereochemistry has been determined by circular dichroism (CD) exciton chirality method. The CD of the 2, 5-bis-phenyl benzoate of triacetonide derived from the LiAlH$_{4}$, hydrolysate, euonyminol shows that the configuration of C-2 and C-5 are both R.

  • PDF

Complete Assignment of $^1H-$ and $^{13}C-NMR$ Signals for (20S)- and (20R)-ginsenoside $Rh_2$ by 2D-NMR Techniques (2D-NMR 기법을 이용한 (20S)-와 (20R)-ginsenoside $Rh_2$$^1H-$$^{13}C-NMR$ Signals의 완전 동정)

  • Kim, Dong-Seon;Lee, You-Hui;Park, Jong-Dae;Jeong, So-Young;Lee, Chun-Bae;Kim, Shin-Il;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.184-189
    • /
    • 1995
  • (20S)- and (20R)-Ginsenoside $Rh_2$ were prepared from crude ginseng saponin by chemical treatments. The $^1H-$ and $^{13}C-NMR$ signals of these compounds were fully assigned by various NMR techniques such as DEPT, $^1H-^1H$ COSY, HMQC, HMBC and NOESY.

  • PDF

Purification and characterization of antifungal compounds produced by Bacillus subtilis KS1 (Bacillus subtilis KS1이 생산하는 항진균물질의 정제 및 특성)

  • Ryoo, Sung-Woo;Maeng, Hack-Young;Maeng, Pil-Jae
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.293-304
    • /
    • 1996
  • A bacterial strain, KSl, possessing strong antifungal activity was isolated from soil samples of ginseng fields and identified as Bacillus subtilis. In greenhouse test, the culture filtrate of B. subtilis KS1 showed strong protective effect against several fungal diseases of agricultural plants such as cucumber gray mold and wheat leaf rust. In addition, the crude butanol fraction of the culture filtrate exhibited antagonistic effect against several fungi including plant or human pathogens, such as Botrytis maydis, Chytridium lagenarium and Candida albicans. The antifungal compound, SW1, produced by B. subtilis KS1 was purified through consecutive chromatographic separations on a pep-RPC column and a ${\mu}$ Bondapak $C_{18}$ reverse phase column. Temperature and pH showed little effect on the stability of the compound in the ranges $-20-121^{\circ}C$ and pH 4.0-10.0, respectively. The composition and structural characteristics of SW1 were analysed by HPLC and by $^1H-,\;^1H-^1H-COSY$, NOESY, COSY-NOESY and HOHAHA NMR spectroscopy, respectively, which revealed that the compound belongs to iturin A, a typical cyclic antifungal compound produced by B. subtilis. In contrast to the previously reported iturin A compounds which have one or no $-CH_3$ side chain in the hydrophobic hydrocarbon chain of ${\beta}-amino$ acids, SW1 was shown to have a ${\beta}-amino$ acid containing 12-carbon skeleton with two $-CH_3$ side chains.

  • PDF

Phenolic Compound from Lepisorus thunbergianus (일엽초의 페놀성 물질)

  • Lee, Min-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.29 no.2
    • /
    • pp.142-145
    • /
    • 1998
  • Two phenylpropanoids and one flavan 3-ol were isolated from Lepisorus thunbergianus (Polypodiaceae, fern), which is used as folkmedicine. Phenylpropanoids were identified as caffeic acid and chlorogenic acid, and flavan 3-ol was elucidated as (-)-epicatechin 7-O-${\beta}$-D-glucoside by physico-chemical and spectral evidences (HMQC, NOESY).

  • PDF