DOI QR코드

DOI QR Code

Macromolecular Docking Simulation to Identify Binding Site of FGB1 for Antifungal Compounds

  • Soundararajan, Prabhakaran (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School, Gyeongsang National University) ;
  • Sakkiah, Sugunadevi (Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Researh Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Sivanesan, Iyyakkannu (Institute of Agricultural & Life Science, Gyeongsang National University) ;
  • Lee, Keun-Woo (Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Researh Institute of Natural Science (RINS), Gyeongsang National University (GNU)) ;
  • Jeong, Byoung-Ryong (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School, Gyeongsang National University)
  • Received : 2011.05.19
  • Accepted : 2011.08.16
  • Published : 2011.10.20

Abstract

Fusarium oxysporum, an important pathogen that mainly causes vascular or fusarium wilt disease which leads to economic loss. Disruption of gene encoding a heterotrimeric G-protein-${\beta}$-subunit (FGB1), led to decreased intracellular cAMP levels, reduced pathogenicity, colony morphology, and germination. The plant defense protein, Nicotiana alata defensin (NaD1) displays potent antifungal activity against a variety of agronomically important filamentous fungi. In this paper, we performed a molecular modeling and docking studies to find vital amino acids which can interact with various antifungal compounds using Discovery Studio v2.5 and GRAMMX, respectively. The docking results from FGB1-NaD1 and FGB1-antifungal complexes, revealed the vital amino acids such as His64, Trp65, Ser194, Leu195, Gln237, Phe238, Val324 and Asn326, and suggested that the anidulafungin is a the good antifungal compound.The predicted interaction can greatly assist in understanding structural insights for studying the pathogen and host-component interactions.

Keywords

References

  1. Gordon, T. R.; Martyn, R. D. Annu. Rev. Phytopathol. 1997, 35, 111. https://doi.org/10.1146/annurev.phyto.35.1.111
  2. Bhuvanendra Kumar, H.; Udaya Shankar, A. C.; Chandra Nayaka, S.; Ramachandra Kini, K.; Shetty, H. S.; Prakash, H. S. Af J. Biotech. 2010, 9, 523.
  3. Steinkellner, S.; Mammerler, R.; Vierheilig, H. J. J. Plant Interact. 2005, 1, 23. https://doi.org/10.1080/17429140500134334
  4. Netzer, D. Phytoparasitica 1976, 4, 131. https://doi.org/10.1007/BF02980343
  5. Abd-Elsalam, K. A.; Asran-Amal, A.; Schnieder, F.; Migheli. Q.; Verreet, J. A. J. Plant Disease Protection 2006, 113, 14.
  6. Armstrong, G. M.; Armstrong, J. K. In Fusarium: Disease, Biology, and Taxonomy; Nelson, P. E., Toussoun, T. A., Cook, R. J., Eds.; Pennsylvania State Univ. Press: London, U.K., 1981; p 391.
  7. MacHardy, W. E.; Beckman, C. H. In Fusarium: Disease, Biology, and Taxonomy; Nelson, P. E., Toussoun, T. A., Cook, R. J., Eds.; Pennsylvania State Univ. Press: London, U.K. 1981; p 365.
  8. Gilman, A. G. Annu. Rev. Biochem. 1987, 56, 615. https://doi.org/10.1146/annurev.bi.56.070187.003151
  9. Lengeler, K. B.; Davidson, R. C.; D'Souza, C.; Harashima, T.; Shen, W. C.; Wang, P.; Pan, X.; Waugh, M.; Heitman, J. Microbiol. Mol. Biol. Rev. 2000, 64, 746. https://doi.org/10.1128/MMBR.64.4.746-785.2000
  10. Herbert, J. A.; Marx, D. Phytophylactica 1990, 22, 339.
  11. Edel, V.; Steinberg, C. N.; Gautheron, N.; Alabouvette, C. Mycol. Res. 2000, 104, 518. https://doi.org/10.1017/S0953756299001896
  12. Boutati, E. I.; Anaissie, E. J. Blood 1997, 90, 999.
  13. Odds, F. C.; Van Gerven, F.; Espinel-Ingroff, A.; Bartlett, M. S.; Ghannoum, M. A.; Lancaster, M. V.; Pfaller, M. A.; Rex, J. H.; Rinaldi, M. G.; Walsh, T. J. Antimicrob. Agents Chemother. 1998, 42, 282.
  14. Nucci, M.; Anaissie, E. Clin. Infect. Dis. 2002, 35, 909. https://doi.org/10.1086/342328
  15. Ponton, J.; Ruchel, R.; Clemons, K. V.; Coleman, D. C.; Grillot, R.; Guarro, J.; Aldebert, D.; Ambroise-Thomas, P.; Cano, J.; Carrillo-Munoz, A. J.; Gene, J.; Pinel, C.; Stevens, D. A.; Sullivan,D. J. Med. Mycol. 2000, 38, 225. https://doi.org/10.1080/mmy.38.s1.225.236
  16. Vartivarian, S. E.; Anaissie, E. J.; Bodey, G. P. Clin. Infect. Dis. 1993, 17, 487. https://doi.org/10.1093/clinids/17.Supplement_2.S487
  17. Guarro, J.; Gene, J. Eu J. Clin. Microbiol. Infect. Dis. 1995, 14, 741. https://doi.org/10.1007/BF01690988
  18. Prabhakaran, S.; Srividya, V.; Bharathi, N.; Jayakanthan, M.; ManikandaBoopathi, N. Online J. Bioinformatics 2009, 10, 180.
  19. Van der Weerden, N. L.; Lay, F. T.; Anderson, M. A. J. Biol. Chem. 2008, 283, 14445. https://doi.org/10.1074/jbc.M709867200
  20. Thompson, G. R.; Cadena, J.; Patterson, T. F. Clin. Chest Med. 2009, 30, 203. https://doi.org/10.1016/j.ccm.2009.02.001
  21. Warnock, D. W. J. Antimicrob. Chemother. 1991, 28, 27. https://doi.org/10.1093/jac/28.suppl_B.27
  22. Kyle, A. A.; Dahl, M. V. Am J. Clin. Dermatol. 2004, 5, 443. https://doi.org/10.2165/00128071-200405060-00009
  23. Polak, A.; Scholer, H. J. Chemother. 1975, 21, 113. https://doi.org/10.1159/000221854
  24. Denning, D. W. J. Antimicrob. Chemother. 2002, 49, 889. https://doi.org/10.1093/jac/dkf045
  25. Denning, D. W. Lancet 2003, 362, 1142. https://doi.org/10.1016/S0140-6736(03)14472-8
  26. Klebe, G. Drug Discov. Today 2006, 11, 580. https://doi.org/10.1016/j.drudis.2006.05.012
  27. Muegge, I.; Oloff, S. Drug Discov. Today Technol. 2006, 3, 405. https://doi.org/10.1016/j.ddtec.2006.12.002
  28. Liu, M.; He, L.; Hu, X.; Liu, P.; Luo, H. B. Bioorg. Med. Chem. Letters 2010, 20, 7004. https://doi.org/10.1016/j.bmcl.2010.09.116
  29. Laurie, A. T.; Jackson, R. M. Bioinformatics 2005, 21, 1908. https://doi.org/10.1093/bioinformatics/bti315
  30. Tovchigrechko, A.; Vakser, I. A. Nucleic Acids Res. 2006, 34, 310.
  31. Venkatachalam, C. M.; Jiang, X.; Oldfield, T.; Waldman, M. J. Mol. Graph. Model. 2003, 21, 289. https://doi.org/10.1016/S1093-3263(02)00164-X
  32. Wang, R.; Lai, L.; Wang, S. J. Comput. Aided Mol. Des. 2002, 16, 11. https://doi.org/10.1023/A:1016357811882
  33. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235. https://doi.org/10.1093/nar/28.1.235
  34. Sakkiah, S.; Thangapandian, S.; John, S.; Kwon, Y. J.; Lee, K. W. Eu. J. Med. Chem. 2010, 45, 2132. https://doi.org/10.1016/j.ejmech.2010.01.016
  35. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Computat. Chem. 1983, 4, 187. https://doi.org/10.1002/jcc.540040211
  36. Ramachandran, G. N.; Sasisekharan, V. Advan. Prot. Chem. 1968, 23, 283. https://doi.org/10.1016/S0065-3233(08)60402-7
  37. Smellie, A.; Teig, S. L.; Towbin, P. J. Computat. Chem. 1995, 16, 171. https://doi.org/10.1002/jcc.540160205
  38. Muegge, I. Med. Chem. Res. 1999, 9, 490.
  39. Schapira, M.; Abagyan, R.; Totrov, M. J. Med. Chem. 2003, 46, 3045. https://doi.org/10.1021/jm0300173
  40. Chandrasekaran, M.; Sakkiah, S.; Thangapandian, S.; Namadevan, S.; Kim, H. H.; Kim, Y.; Lee, K. W. Bull. Korean Chem. Soc. 2010, 31, 3333. https://doi.org/10.5012/bkcs.2010.31.11.3333
  41. Sakkiah, S.; Thangapandian, S.; John, S.; Lee, K. W. J. Mol. Struc. 2010 doi:10.1016/j.molstruc.2010.08.050.
  42. Bharatham, N.; Bharatham, K.; Lee, Y.; Kim, S.; Lazar, P.; Baek, A.; Park, C.; Eum, H.; Ha, H. J.; Yun, S. Y.; Lee, W. K.; Kim, S. H.; Lee, K. W. Bull. Korean Chem. Soc. 2010, 31, 606. https://doi.org/10.5012/bkcs.2010.31.03.606
  43. Krammer, A.; Kirchhoff, P. D.; Jiang, X.; Venkatachalam, C. M.; Waldman, M. J. Mol. Graph. Model. 2005, 23, 395. https://doi.org/10.1016/j.jmgm.2004.11.007
  44. Gehlhaar, D. K.; Verkhivker, G. M.; Rejto, P. A.; Sherman, C. J.; Fogel, D. B.; Fogel, L. J.; Freer, S. T. Chem. Biol. 1995, 2, 317. https://doi.org/10.1016/1074-5521(95)90050-0
  45. Daisy, P.; Sasikala, R.; Ambika, A. J. Proteomics and Bioinformatics 2009, 2, 274. https://doi.org/10.4172/jpb.1000086
  46. Jain, A. N. J. Computer-Aided Mol. Des. 1996, 10, 427. https://doi.org/10.1007/BF00124474
  47. Muegge, I.; Martin, Y. C. J. Med. Chem. 1999, 42, 791. https://doi.org/10.1021/jm980536j
  48. Bohm, H. J. J. Computer-Aided Mol. Des. 1992, 6, 61. https://doi.org/10.1007/BF00124387
  49. Hamm, H. E.; Gilchrist, A. Opin. Cell Biol. 1996, 8, 189. https://doi.org/10.1016/S0955-0674(96)80065-2
  50. Schneider, G.; Bohm, H. J. Combinatorial Chem. 2002, 7, 64.

Cited by

  1. Computer-Aided Drug Discovery in Plant Pathology vol.33, pp.6, 2011, https://doi.org/10.5423/ppj.rw.04.2017.0084
  2. Novel β-keto-enol Pyrazolic Compounds as Potent Antifungal Agents. Design, Synthesis, Crystal Structure, DFT, Homology Modeling, and Docking Studies vol.59, pp.4, 2011, https://doi.org/10.1021/acs.jcim.8b00828
  3. Synthesis, Antimicrobial Screening, Homology Modeling, and Molecular Docking Studies of a New Series of Schiff Base Derivatives as Prospective Fungal Inhibitor Candidates vol.24, pp.18, 2011, https://doi.org/10.3390/molecules24183250
  4. Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligan vol.110, pp.None, 2011, https://doi.org/10.1016/j.bioorg.2021.104696