DOI QR코드

DOI QR Code

Electrochemical Properties of Binary Electrolytes for Lithium-sulfur Batteries

  • Kim, Hyung-Sun (Energy Storage Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jeong, Chang-Sik (Energy Storage Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2011.07.23
  • Accepted : 2011.08.17
  • Published : 2011.10.20

Abstract

The electrochemical properties of lithium-sulfur batteries with binary electrolytes based on DME and DOL, TEGDME and DOL mixed solvent containing $LiClO_4$, LiTFSI, and LiTF salts were investigated. The ionic conductivity of 1M LiTFSI and $LiClO_4$ electrolytes based on TEGDME and DOL increased as the volume ratio of DOL solvent increased, because DOL effectively reduces the viscosity of the above electrolytes medium under the same salts concentration. The first discharge capacity of lithium-sulfur batteries in the DME and DOL-based electrolyte followed this order: LiTFSI (1,000 mAh/g) > LiTF (850 mAh/g) > $LiClO_4$ (750 mAh/g). In case of the electrolyte based on TEGDME and DOL, the first discharge capacity of batteries followed this order: $LiClO_4$ (1,030 mAh/g) > LiTF (770 mAh/g) > LiTFSI (750 mAh/g). The cyclic efficiency of lithium-sulfur batteries at 1M $LiClO_4$ electrolytes is higher than that of batteries at other lithium salts-based electrolytes. Lithium-sulfur battery showed discharge capacity of 550 mAh/g until 20 cycles at all electrolytes based on DME and DOL solvent. By contrast, the discharge capacity of batteries was about 450 mAh/g at 1M LiTFSI and LiTF electrolytes based on TEGDME and DOL solvent after 20 cycles.

Keywords

References

  1. Choi, Y.; Kim, K.; Ahn, H.; Ahn, J. J. Alloys and Compounds 2008, 449, 313. https://doi.org/10.1016/j.jallcom.2006.02.098
  2. Zhu, X.; Wen, Z.; Gu, Z.; Lin, Z. J. Power Sources 2005, 139, 269. https://doi.org/10.1016/j.jpowsour.2004.07.002
  3. Akridge, J.; Mikhaylik, Y.; White, N. Solid State Ionics 2004, 175, 243. https://doi.org/10.1016/j.ssi.2004.07.070
  4. Wang, J.; Yang, J.; Xie, J.; Xu, N.; Li Y. Electrochemistry Communications 2002, 4, 499. https://doi.org/10.1016/S1388-2481(02)00358-2
  5. Marmorstein, D.; Yu, T.; Striebel, K.; McLarnon, F.; Hou, J.; Cairns, E. J. Power Sources 2001, 89, 219.
  6. Kim, S.; Jung, Y.; Park, S. Electrochimica Acta 2007, 52, 2166. https://doi.org/10.1016/j.electacta.2006.08.041
  7. Kim, S.; Jung, Y.; Lim, H. Electrochimica Acta 2004, 50, 889. https://doi.org/10.1016/j.electacta.2004.01.093
  8. Yamin, H.; Gorenshtein, A.; Penciner, J.; Sternberg, Y.; Peled, E. J. Electrochemical Society 1988, 135, 1045. https://doi.org/10.1149/1.2095868
  9. Rhu, H.; Ahn, H.; Kim, K.; Ahn, J.; Cho, K.; Nam, T. J. Power Sources 2006, 163, 201. https://doi.org/10.1016/j.jpowsour.2005.12.061
  10. Cheon, S.; Ko, K.; Cho, J.; Kim, S.; Chin, E.; K, H. J. Electrochemical Society 2003, 150, A796. https://doi.org/10.1149/1.1571532
  11. Rhu, H.; Ahn, H.; Kim, K.; Ahn, J.; Lee, J. J. Power Sources 2006, 153, 360. https://doi.org/10.1016/j.jpowsour.2005.05.037
  12. Rhu, H.; Ahn, H.; Kim, K.; Ahn, J.; Lee, J.; Cairns, E. J. Power Sources 2005, 140, 365. https://doi.org/10.1016/j.jpowsour.2004.08.039
  13. Jin, B.; Kim, J.; Gu, H. J. Power Sources 2003, 117, 148. https://doi.org/10.1016/S0378-7753(03)00113-7
  14. Trofimov, B.; Markova, M.; Morzova, L.; Prozorova, G.; Korzhova, S.; Cho, M.; Annenkov, V.; Mikhaleva, A. Electrochimica Acta 2011, 56, 2458. https://doi.org/10.1016/j.electacta.2010.11.064
  15. Choi, J.; Kim, J.; Cheruvally, G.; Ahn, J.; Ahn, H.; Kim, K. Electrochimica Acta 2007, 52, 2075. https://doi.org/10.1016/j.electacta.2006.08.016
  16. Chang, D.; Lee, S.; Kim, S.; Kim, H. J. Power Sources 2002, 112, 452. https://doi.org/10.1016/S0378-7753(02)00418-4
  17. Rauh, R.; Ahraham, K.; Pearson, G.; Suprenant, J.; Brummer, S. J. Electrochemical Society 1979, 126, 523. https://doi.org/10.1149/1.2129079
  18. Peled, E., Gorenshtein, A.; Segal, M.; Sternberg, Y. J. Power Sources 1989, 26, 269. https://doi.org/10.1016/0378-7753(89)80133-8
  19. Peled, E.; Sternberg, Y.; Gorenshtein, A.; Lavi, Y. J. Electrochemical Society 1989, 136, 1621. https://doi.org/10.1149/1.2096981

Cited by

  1. Exceptional Electrochemical Performance of Si-Nanowires in 1,3-Dioxolane Solutions: A Surface Chemical Investigation vol.28, pp.14, 2012, https://doi.org/10.1021/la300306v
  2. Lithium-sulfur batteries vol.39, pp.05, 2014, https://doi.org/10.1557/mrs.2014.86
  3. vol.53, pp.8S3, 2014, https://doi.org/10.7567/JJAP.53.08NK01
  4. Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? vol.7, pp.12, 2014, https://doi.org/10.1039/C4EE02192D
  5. Recent Advances in Electrolytes for Lithium-Sulfur Batteries vol.5, pp.16, 2015, https://doi.org/10.1002/aenm.201500117
  6. , and Li–S vol.8, pp.7, 2015, https://doi.org/10.1039/C5EE01215E
  7. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles vol.353, pp.6299, 2016, https://doi.org/10.1126/science.aaf4914
  8. Lithium–germanium–phosphate glassceramic electrolytes: correlation between the nanocrystallization and electrical studies vol.6, pp.7, 2016, https://doi.org/10.1007/s13204-016-0519-x
  9. A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery vol.6, pp.8, 2016, https://doi.org/10.1002/aenm.201502183
  10. XPS and SIMS Analysis of Solid Electrolyte Interphases on Lithium Formed by Ether-Based Electrolytes vol.164, pp.14, 2017, https://doi.org/10.1149/2.0851714jes
  11. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review vol.3, pp.None, 2011, https://doi.org/10.3389/fenrg.2015.00005
  12. Recent Progress in Liquid Electrolyte-Based Li-S Batteries: Shuttle Problem and Solutions vol.1, pp.4, 2011, https://doi.org/10.1007/s41918-018-0021-0
  13. Unraveling the Formation Mechanism of Solid-Liquid Electrolyte Interphases on LiPON Thin Films vol.11, pp.9, 2019, https://doi.org/10.1021/acsami.8b19973
  14. Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes vol.7, pp.38, 2019, https://doi.org/10.1039/c9ta09502k
  15. A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review vol.55, pp.15, 2011, https://doi.org/10.1007/s10853-020-04434-8
  16. The Toxicity of Secondary Lithium-Sulfur Batteries Components vol.6, pp.3, 2011, https://doi.org/10.3390/batteries6030045
  17. Repurposing Waste Tires as Tunable Frameworks for Use in Sodium-Ion and Lithium-Sulfur Batteries vol.9, pp.20, 2011, https://doi.org/10.1021/acssuschemeng.1c00502
  18. Liquid‐Based Janus Electrolyte for Sustainable Redox Mediation in Lithium-Oxygen Batteries vol.11, pp.38, 2021, https://doi.org/10.1002/aenm.202102096