References
- Choi, Y.; Kim, K.; Ahn, H.; Ahn, J. J. Alloys and Compounds 2008, 449, 313. https://doi.org/10.1016/j.jallcom.2006.02.098
- Zhu, X.; Wen, Z.; Gu, Z.; Lin, Z. J. Power Sources 2005, 139, 269. https://doi.org/10.1016/j.jpowsour.2004.07.002
- Akridge, J.; Mikhaylik, Y.; White, N. Solid State Ionics 2004, 175, 243. https://doi.org/10.1016/j.ssi.2004.07.070
- Wang, J.; Yang, J.; Xie, J.; Xu, N.; Li Y. Electrochemistry Communications 2002, 4, 499. https://doi.org/10.1016/S1388-2481(02)00358-2
- Marmorstein, D.; Yu, T.; Striebel, K.; McLarnon, F.; Hou, J.; Cairns, E. J. Power Sources 2001, 89, 219.
- Kim, S.; Jung, Y.; Park, S. Electrochimica Acta 2007, 52, 2166. https://doi.org/10.1016/j.electacta.2006.08.041
- Kim, S.; Jung, Y.; Lim, H. Electrochimica Acta 2004, 50, 889. https://doi.org/10.1016/j.electacta.2004.01.093
- Yamin, H.; Gorenshtein, A.; Penciner, J.; Sternberg, Y.; Peled, E. J. Electrochemical Society 1988, 135, 1045. https://doi.org/10.1149/1.2095868
- Rhu, H.; Ahn, H.; Kim, K.; Ahn, J.; Cho, K.; Nam, T. J. Power Sources 2006, 163, 201. https://doi.org/10.1016/j.jpowsour.2005.12.061
- Cheon, S.; Ko, K.; Cho, J.; Kim, S.; Chin, E.; K, H. J. Electrochemical Society 2003, 150, A796. https://doi.org/10.1149/1.1571532
- Rhu, H.; Ahn, H.; Kim, K.; Ahn, J.; Lee, J. J. Power Sources 2006, 153, 360. https://doi.org/10.1016/j.jpowsour.2005.05.037
- Rhu, H.; Ahn, H.; Kim, K.; Ahn, J.; Lee, J.; Cairns, E. J. Power Sources 2005, 140, 365. https://doi.org/10.1016/j.jpowsour.2004.08.039
- Jin, B.; Kim, J.; Gu, H. J. Power Sources 2003, 117, 148. https://doi.org/10.1016/S0378-7753(03)00113-7
- Trofimov, B.; Markova, M.; Morzova, L.; Prozorova, G.; Korzhova, S.; Cho, M.; Annenkov, V.; Mikhaleva, A. Electrochimica Acta 2011, 56, 2458. https://doi.org/10.1016/j.electacta.2010.11.064
- Choi, J.; Kim, J.; Cheruvally, G.; Ahn, J.; Ahn, H.; Kim, K. Electrochimica Acta 2007, 52, 2075. https://doi.org/10.1016/j.electacta.2006.08.016
- Chang, D.; Lee, S.; Kim, S.; Kim, H. J. Power Sources 2002, 112, 452. https://doi.org/10.1016/S0378-7753(02)00418-4
- Rauh, R.; Ahraham, K.; Pearson, G.; Suprenant, J.; Brummer, S. J. Electrochemical Society 1979, 126, 523. https://doi.org/10.1149/1.2129079
- Peled, E., Gorenshtein, A.; Segal, M.; Sternberg, Y. J. Power Sources 1989, 26, 269. https://doi.org/10.1016/0378-7753(89)80133-8
- Peled, E.; Sternberg, Y.; Gorenshtein, A.; Lavi, Y. J. Electrochemical Society 1989, 136, 1621. https://doi.org/10.1149/1.2096981
Cited by
- Exceptional Electrochemical Performance of Si-Nanowires in 1,3-Dioxolane Solutions: A Surface Chemical Investigation vol.28, pp.14, 2012, https://doi.org/10.1021/la300306v
- Lithium-sulfur batteries vol.39, pp.05, 2014, https://doi.org/10.1557/mrs.2014.86
- vol.53, pp.8S3, 2014, https://doi.org/10.7567/JJAP.53.08NK01
- Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? vol.7, pp.12, 2014, https://doi.org/10.1039/C4EE02192D
- Recent Advances in Electrolytes for Lithium-Sulfur Batteries vol.5, pp.16, 2015, https://doi.org/10.1002/aenm.201500117
- , and Li–S vol.8, pp.7, 2015, https://doi.org/10.1039/C5EE01215E
- Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles vol.353, pp.6299, 2016, https://doi.org/10.1126/science.aaf4914
- Lithium–germanium–phosphate glassceramic electrolytes: correlation between the nanocrystallization and electrical studies vol.6, pp.7, 2016, https://doi.org/10.1007/s13204-016-0519-x
- A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery vol.6, pp.8, 2016, https://doi.org/10.1002/aenm.201502183
- XPS and SIMS Analysis of Solid Electrolyte Interphases on Lithium Formed by Ether-Based Electrolytes vol.164, pp.14, 2017, https://doi.org/10.1149/2.0851714jes
- Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review vol.3, pp.None, 2011, https://doi.org/10.3389/fenrg.2015.00005
- Recent Progress in Liquid Electrolyte-Based Li-S Batteries: Shuttle Problem and Solutions vol.1, pp.4, 2011, https://doi.org/10.1007/s41918-018-0021-0
- Unraveling the Formation Mechanism of Solid-Liquid Electrolyte Interphases on LiPON Thin Films vol.11, pp.9, 2019, https://doi.org/10.1021/acsami.8b19973
- Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes vol.7, pp.38, 2019, https://doi.org/10.1039/c9ta09502k
- A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review vol.55, pp.15, 2011, https://doi.org/10.1007/s10853-020-04434-8
- The Toxicity of Secondary Lithium-Sulfur Batteries Components vol.6, pp.3, 2011, https://doi.org/10.3390/batteries6030045
- Repurposing Waste Tires as Tunable Frameworks for Use in Sodium-Ion and Lithium-Sulfur Batteries vol.9, pp.20, 2011, https://doi.org/10.1021/acssuschemeng.1c00502
- Liquid‐Based Janus Electrolyte for Sustainable Redox Mediation in Lithium-Oxygen Batteries vol.11, pp.38, 2021, https://doi.org/10.1002/aenm.202102096