DOI QR코드

DOI QR Code

Synthesis of 2,4,6-Tripyridyl Pyridines, and Evaluation of Their Antitumor Cytotoxicity, Topoisomerase I and II Inhibitory Activity, and Structure-activity Relationship

  • Received : 2011.06.01
  • Accepted : 2011.08.02
  • Published : 2011.10.20

Abstract

A series of 2,4,6-tripyridyl pyridines were synthesized, and evaluated for their antitumor cytotoxicity, topoisomerase I and II inhibitory activity. From the eighteen prepared compounds, compounds 10-12 have shown better or similar cytotoxicity against several human cancer cell lines as compared to 2,2':6',2"-terpyridine and doxorubicin. Especially, compound 10 exhibited the most potent cytotoxicity better than positive controls. Structure-activity relationship study indicated that 2,2':6',2"-terpyridine skeleton has an important role in displaying significant cytotoxicity against several human cancer cell lines.

Keywords

References

  1. Kim, D. S. H. L.; Ashendel, C. L.; Zhou, Q.; Chang, C.-T.; Lee E.-S.; Chang, C.-J. Bioorg. Med. Chem. Lett. 1998, 8, 2695. https://doi.org/10.1016/S0960-894X(98)00468-5
  2. Xu, W.-C.; Zhou, Q.; Ashendel, C. L.; Chang, C.-T.; Chang, C.-J. Bioorg. Med. Chem. Lett. 1999, 9, 2279. https://doi.org/10.1016/S0960-894X(99)00375-3
  3. Zhao, L. X.; Kim, T. S.; Ahn, S. H.; Kim, T. H.; Kim, E. K.; Cho, W. J.; Choi, H. S.; Lee, C. S.; Kim, J. A.; Jeong, T. C.; Chang, C.-J.; Lee, E.-S. Bioorg. Med. Chem. Lett. 2001, 11, 2659. https://doi.org/10.1016/S0960-894X(01)00531-5
  4. Zhao, L. X.; Moon, Y. S.; Basnet, A.; Kim, E. K.; Jahng, Y.; Park, J. G.; Jeong, T. C.; Cho, W. J.; Choi, S. U.; Lee, C. O.; Lee, S. Y.; Lee, C. S.; Lee, E.-S. Bioorg. Med. Chem. Lett. 2004, 14, 1333. https://doi.org/10.1016/j.bmcl.2003.11.084
  5. Zhao, L. X.; Sherchan, J.; Park, J. K.; Jahng, Y.; Jeong, B. S.; Jeong, T. C.; Lee, C. S.; Lee, E.-S. Arch. Pharm. Res. 2006, 29, 1091. https://doi.org/10.1007/BF02969297
  6. Basnet, A.; Thapa, P.; Karki, R.; Na, Y.; Jahng, Y.; Jeong, B. S.; Jeong, T. C.; Lee, C. S.; Lee, E.-S. Bioorg. Med. Chem. 2007, 15, 4351. https://doi.org/10.1016/j.bmc.2007.04.047
  7. Son, J. K., Zhao, L. X.; Basnet, A.; Thapa, P.; Karki, R.; Na, Y.; Jahng, Y.; Jeong, T. C.; Jeong, B. S.; Lee, C. S.; Lee, E.-S. Eur. J. Med. Chem. 2008, 43, 675. https://doi.org/10.1016/j.ejmech.2007.05.002
  8. Thapa, P.; Karki, R.; Basnet, A.; Thapa, U.; Choi, H. Y.; Na, Y.; Jahng, Y.; Lee, C. S.; Kwon, Y.; Jeong, B. S.; Lee, E.-S. Bull. Korean Chem. Soc. 2008, 29, 1605. https://doi.org/10.5012/bkcs.2008.29.8.1605
  9. Basnet, A.; Thapa, P.; Karki, R.; Choi, H. Y.; Choi, J. H.; Yun, M.; Jeong, B. S.; Jahng, Y.; Na, Y.; Cho, W. J.; Kwon, Y.; Lee, C. S.; Lee, E.-S. Bioorg. Med. Chem. Lett. 2010, 20, 42. https://doi.org/10.1016/j.bmcl.2009.11.041
  10. Thapa, P.; Karki, R.; Thapa, U.; Jahng, Y.; Jung, M. J.; Nam, J. M.; Na, Y.; Kwon, Y.; Lee, E.-S. Bioorg. Med. Chem. 2010, 18, 377. https://doi.org/10.1016/j.bmc.2009.10.049
  11. Thapa, P.; Karki, R.; Choi, H. Y.; Choi, J. H.; Yun, M.; Jeong, B. S.; Jung, M. J.; Nam, J. M.; Na, Y.; Cho, W. J.; Kwon, Y.; Lee, E.-S. Bioorg. Med. Chem. 2010, 18, 2245. https://doi.org/10.1016/j.bmc.2010.01.065
  12. Karki, R.; Thapa, P.; Kang, M. J.; Jeong, T. C.; Nam, J. M.; Kim, H. L.; Na, Y.; Cho, W. J.; Kwon, Y.; Lee, E.-S. Bioorg. Med. Chem. 2010, 18, 3066. https://doi.org/10.1016/j.bmc.2010.03.051
  13. Karki, R.; Thapa, P.; Kwon, Y.; Lee, E.- S. Bull. Korean Chem. Soc. 2010, 31, 1747. https://doi.org/10.5012/bkcs.2010.31.6.1747
  14. Jeong, B. S.; Choi, H. Y.; Thapa, P.; Karki, R.; Lee, E.; Nam, J. M.; Na, Y.; Ha, E.-M.; Kwon, Y.; Lee, E.-S. Bull. Korean Chem. Soc. 2011, 32, 303. https://doi.org/10.5012/bkcs.2011.32.1.303
  15. Eryazici, I.; Moorefield, C. N.; Newkome, G. R. Chem. Rev. 2008, 108, 1834. https://doi.org/10.1021/cr0781059
  16. Heller, M.; Schubert, U. S. Macromol. Rapid. Comm. 2002, 23, 411. https://doi.org/10.1002/1521-3927(20020401)23:7<411::AID-MARC411>3.0.CO;2-R
  17. Lowe, G.; Droz, A. S.; Park, J. J.; Weaver, G. W. Bioorg. Chemistry 1999, 27, 477. https://doi.org/10.1006/bioo.1999.1152
  18. Patel, K. K.; Plummer, E. A.; Darwish, M.; Rodger, A.; Hannon, M. J. J. Inorg. Biochem. 2002, 91, 220. https://doi.org/10.1016/S0162-0134(01)00423-8
  19. Carter, P. J.; Cheng, C. C.; Thorp, H. H. J. Am. Chem. Soc. 1998, 120, 632. https://doi.org/10.1021/ja9729589
  20. Jennette, K. W.; Lippard, S. J.; Vassiliades, G. A.; Bauer, W. R. Proc. Nat. Acad. Sci. USA 1974, 71, 3839. https://doi.org/10.1073/pnas.71.10.3839
  21. McCoubrey, A.; Latham, H. C.; Cook, P. R.; Rodger, A.; Lowe, G. FEBS Lett. 1996, 380, 73. https://doi.org/10.1016/0014-5793(95)01537-X
  22. Wang, J. C. Annu. Rev. Biochem. 1996, 65, 635. https://doi.org/10.1146/annurev.bi.65.070196.003223
  23. Nitiss, J. L. Biochim. Biophys. Acta 1998, 1400, 63. https://doi.org/10.1016/S0167-4781(98)00128-6
  24. Haglof, K. J.; Popa, E.; Hochster, H. S. Update Cancer Ther. 2006, 1, 117. https://doi.org/10.1016/j.uct.2006.05.010
  25. Hande, K. R. Update Cancer Ther. 2008, 3, 13. https://doi.org/10.1016/j.uct.2008.02.001
  26. Holden, J. A. Curr. Med. Chem.-Anti-Cancer Agents 2001, 1, 1. https://doi.org/10.2174/1568011013354859
  27. Fukuda, M.; Nishio, K.; Kanzawa, F.; Ogasawara, H.; Ishida, T.; Arioka, H.; Bonjanowski, K.; Oka, M.; Saijo, N. Cancer Res. 1996, 56, 789.
  28. Kang, D. H.; Kim, J. S.; Jung, M. J.; Lee, E.-S.; Jahng, Y.; Kwon, Y.; Na, Y. Bioorg. Med. Chem. Lett. 2008, 18, 1520. https://doi.org/10.1016/j.bmcl.2007.12.053
  29. Jahng, Y.; Zhao, L. X.; Moon, Y. S.; Basnet, A.; Kim, E. K.; Chang, H. W.; Ju, H. K.; Jeong, T. C.; Lee, E.-S. Bioorg. Med. Chem. Lett. 2004, 14, 2559. https://doi.org/10.1016/j.bmcl.2004.02.099
  30. Krohnke, F. Angew. Chem. Internat. Edit. 1963, 2, 380. https://doi.org/10.1002/anie.196303801
  31. Krohnke, F. Synthesis 1976, 1.

Cited by

  1. FPDHP, a novel anticancer agent, induces cell detachment and caspase-dependent apoptosis in Caki cells vol.34, pp.4, 2014, https://doi.org/10.3892/ijmm.2014.1875
  2. Linear bilateral extended 2,2′:6′,2′′-terpyridine ligands, their coordination complexes and heterometallic supramolecular networks vol.5, pp.11, 2014, https://doi.org/10.1039/C4SC01025F
  3. Synthesis of glycolysis inhibitor (E)-3-(pyridin-3-yl)-1-(pyridin-4-yl)prop-2-en-1-one (3PO) and its inhibition of HUVEC proliferation alone or in a combination with the multi-kinase inhibitor sunitinib vol.72, pp.12, 2018, https://doi.org/10.1007/s11696-018-0548-x
  4. Application of terpyridyl ligands to tune the optical and electrochemical properties of a conducting polymer vol.8, pp.52, 2018, https://doi.org/10.1039/C8RA05333B
  5. Crystal structure of 2-((2-chloropyridin-3-ylamino)methylene)malononitrile, C9H5ClN4 vol.231, pp.3, 2011, https://doi.org/10.1515/ncrs-2015-0242
  6. Synthesis of Novel Pyridine Bearing Biologically Active Imidiazolyl, Pyrazolyl, Oxa/thiadiazolyl and Urea Derivatives as Promising Anticancer Agents vol.17, pp.1, 2020, https://doi.org/10.2174/1570179417666191223163225
  7. A convenient method for synthesis of terpyridines via a cooperative vinylogous anomeric based oxidation vol.10, pp.43, 2011, https://doi.org/10.1039/d0ra04461j
  8. Effect of a Bromine Substituent on the Self-Assembly of an Oligopyridine at the Liquid|Solid Interface vol.124, pp.37, 2011, https://doi.org/10.1021/acs.jpcc.0c05984