DOI QR코드

DOI QR Code

Photoluminescence of CuInS2/(Cd,Zn)S Nanocrystals as a Function of Shell Composition

  • Kim, Young-Kuk (Nanofunctional Powder Group, Korea Institute of Materials Science) ;
  • Ahn, Si-Hyun (Nanofunctional Powder Group, Korea Institute of Materials Science) ;
  • Choi, Gyu-Chae (Nanofunctional Powder Group, Korea Institute of Materials Science) ;
  • Chung, Kook-Chae (Nanofunctional Powder Group, Korea Institute of Materials Science) ;
  • Cho, Young-Sang (Nanofunctional Powder Group, Korea Institute of Materials Science) ;
  • Choi, Chul-Jin (Nanofunctional Powder Group, Korea Institute of Materials Science)
  • Received : 2009.10.24
  • Accepted : 2009.12.16
  • Published : 2011.10.25

Abstract

We modified the optical properties of the $CuInS_2$ nanocrystal (NC) by alloying. Nanocrystals (NCs) with alloyed cores were synthesized by refluxing the as-synthesized $CuInS_2$ NCs with a mixture of cadmium acetate, zinc acetate and palmitic acid. The shift in emission wavelength of the NCs after shell layer formation was minimized by alloying. The photoluminescence (PL) spectra showed significant reduction of emission intensity. A detailed study on the emission process of NCs implies that the formation of shell layers with small lattice mismatch minimized the mismatch strain generated from the shell layers in contrast to core alloyed NCs. In particular, time-resolved PL spectra of the NCs showed a significant increase in the lifetime of excited carriers by modifying the band alignment of the NCs by modifying the shell composition.

Keywords

References

  1. M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, Annu. Rev. Phys. Chem. 41, 477 (1990) [http://dx.doi.org/10.1146/annurev.pc.41.100190.002401].
  2. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993) [http://dx.doi.org/10.1021/ja00072a025].
  3. R. Xie, M. Rutherford, and X. Peng, J. Am. Chem. Soc. 131, 5691 (2009) [http://dx.doi.org/10.1021/ja9005767].
  4. H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, Chem. Mater. 20, 6434 (2008) [http://dx.doi.org/10.1021/cm8006827].
  5. K. Nose, Y. Soma, T. Omata, and S. Otsuka-Yao-Matsuo, Chem. Mater. 21, 2607 (2009) [http://dx.doi.org/10.1021/cm802022p].
  6. H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang, and Y. Li, Nanotechnology 18, 025602 (2007) [http://dx.doi.org/10.1088/0957-4484/18/2/025602].
  7. L. Li, T. J. Daou, I. Texier, T. T. Kim Chi, N. Q. Liem, and P. Reiss, Chem. Mater. 21, 2422 (2009) [http://dx.doi.org/10.1021/cm900103b].
  8. L. Li, A. Pandey, D. J. Werder, B. P. Khanal, J. M. Pietryga, and V. I. Klimov, J. Am. Chem. Soc. 133, 1176 (2011) [http://dx.doi.org/10.1021/ja108261h].
  9. J. Park and S. W. Kim, J. Mater. Chem. 21, 3745 (2011) [http://dx.doi.org/10.1039/C0JM03194A].
  10. M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, J. Chem. Phys. 129, 134709 (2008) [http://dx.doi.org/10.1063/1.2987707].
  11. H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka- Yao-Matsuo, M. Miyazaki, and H. Maeda, Chem. Mater. 18, 3330 (2006) [http://dx.doi.org/10.1021/cm0518022].
  12. Y. K. Kim, Y. S. Cho, K. C. Chung, C. J. Choi, and P. W. Shin, J. Nanosci. Nanotech. in press (2011).
  13. C. H. Ho, J. Electrochem. Soc. 158, H554 (2011) [http://dx.doi.org/10.1149/1.3567534].
  14. A. M. Smith, A. M. Mohs, and S. Nie, Nature Nanotechnol. 4, 56 (2009) [http://dx.doi.org/10.1038/nnano.2008.360].
  15. S. Abdullah, J. P. Coe, and I. D'Amico, Phys. Rev. B 80, 235302 (2009) [http://dx.doi.org/10.1103/PhysRevB.80.235302].
  16. A. Piryatinski, S. A. Ivanov, S. Tretiak, and V. I. Klimov, Nano Lett. 7, 108 (2006) [http://dx.doi.org/10.1021/nl0622404].

Cited by

  1. Time-resolved and temperature-dependent photoluminescence of ternary and quaternary nanocrystals of CuInS2 with ZnS capping and cation exchange vol.114, pp.9, 2013, https://doi.org/10.1063/1.4820269
  2. Defect-mediated spontaneous emission enhancement of plasmon-coupled CuInS_2 and CuInS_2/ZnS vol.6, pp.2, 2016, https://doi.org/10.1364/OME.6.000566
  3. One-pot synthesis of CuInS2 and CuInS2/MS (M=Cd, Zn) core–shell luminescent nanocrystals: a low-temperature and low-cost approach vol.292, pp.11, 2014, https://doi.org/10.1007/s00396-014-3326-5
  4. Facile surface engineering of CuInS2/ZnS quantum dots for LED down-converters vol.6, pp.12, 2016, https://doi.org/10.1039/C5RA26331J
  5. Radiative and Nonradiative Recombination in CuInS2 Nanocrystals and CuInS2-Based Core/Shell Nanocrystals vol.7, pp.17, 2016, https://doi.org/10.1021/acs.jpclett.6b01668
  6. Surface functionalized bare and core–shell quantum dots in poly(ethylene-co-vinyl acetate) for light selective nanocomposite films vol.123, 2014, https://doi.org/10.1016/j.solmat.2013.12.007