Abstract
This paper is concerned with the robustness evaluations of the guidance controller for a bimodal tram which is being developed by the Korea Railroad Research Institute (KRRI). The bimodal tram is an all-wheel steered multiple-articulated vehicle as a new kind of transportation vehicle. This vehicle has to be equipped with an automatic guidance system. In [1], such a controller has been recently proposed. However, since the performance is affected by weight change of the vehicle due to number of the passenger, model parameter uncertainties depending on the state of friction and the elasticity of the tire, and a typhoon, the controller designed must be examined with these conditions. As expected, because the vehicle dynamics is highly nonlinear, for the sake of investigating the robustness of the controller we compose two simulation ways based on the vehicle models which are implemented by the ADAMS and the MATLAB/LabVIEW toolboxes. Different uncertainties and a typhoon disturbance have been considered for the simulation conditions. Simulation results are shown.