DOI QR코드

DOI QR Code

Application of Photosynthetic Pigment Analysis Using a HPLC and CHEMTAX Program to Studies of Phytoplankton Community Composition

HPLC를 이용한 광합성색소 분석과 CHEMTAX 프로그램을 이용한 식물플랑크톤 군집조성 연구

  • Lee, Yong-Woo (Climate & Marine Environment Team, Korea Marine Environment Management Corporation) ;
  • Park, Mi-Ok (Department of Oceanography, Pukyong National University) ;
  • Kim, Yoon-Suk (Ocean Science and Technology Institute, Pohang University Science and Technology) ;
  • Kim, Seong-Su (Climate & Marine Environment Team, Korea Marine Environment Management Corporation) ;
  • Kang, Chang-Keun (Ocean Science and Technology Institute, Pohang University Science and Technology)
  • 이용우 (해양환경관리공단 기후수질팀) ;
  • 박미옥 (부경대학교해양학과) ;
  • 김윤숙 (포항공과대학교 해양대학원) ;
  • 김성수 (해양환경관리공단 기후수질팀) ;
  • 강창근 (포항공과대학교 해양대학원)
  • Received : 2011.02.28
  • Accepted : 2011.08.03
  • Published : 2011.08.31

Abstract

Many studies of the phytoplankton community structure have been conducted using the CHEMTAX program on the basis of the photosynthetic pigment concentrations measured by a HPLC (High-Performance Liquid Chromatography) technique. The CHEMTAX program determines the contribution of each phytoplankton class to total phytoplankton biomass (chlorophyll a) based on the ratios of marker pigment to chlorophyll a of phytoplankton group. In this study, the marker pigment/chlorophyll a ratios were investigated in phytoplankton species isolated from marine waters around the Korean peninsula. These results were used as the input pigment ratios of the CHEMTAX program to investigate phytoplankton community structure in Korean coastal waters (Yeoja and Gamak Bay). There were significant differences in the ratios of marker pigment to chlorophyll a among the different species within the same algal class. There was a significant difference between the values of our ratios and the previously used ratios in other regions of the world. When phytoplankton community composition was calculated using our initial ratios in Yeoja and Gamak Bay, our results were significantly different from the results calculated on the basis of initial ratios of marker pigment in phytoplankton suggested in other marine waters. The estimates of the contributions of the major algal groups (bacillariophyceae and dinophytes) to total chlorophyll a varied within 5% depending on the initial ratios chosen. The variations of estimates for the pico- and nanoplankton (cyanophytes and prasinophytes), which have relatively low contributions to total chlorophyll a, were higher than those for major algal group. Although the HPLC-pigment measurements combined with CHEMTAX analysis are useful for identifying and qualifying phytoplankton community structure, further researches for the pigment ratios of the dominant phytoplankton species presenting in a given area are also needed.

High-Performance Liquid Chromatograph(HPLC)를 이용하여 식물플랑크톤의 광합성색소를 분석한 결과를 토대로 CHEMTAX 프로그램을 이용하여 식물플랑크톤 군집조성을 추정하는 방법이 많이 이용되고 있다. CHEMTAX 프로그램은 식물플랑크톤 군집별(class level)로 체내에 존재하는 주요색소의 chlorophyll a에 대한 상대적인 비 값을 기초로 분석을 한다 본 연구는 국내 해역에서 분리한 식물플랑크톤 군집별 주요 종들이 가지는 광합성색소의 상대적인 비 값을 파악하고 이 자료를 기초로 남해안에 위치한 여자만과 가막만에서 측정한 광합성색소 분석결과에 대해서 CHEMTAX 프로그램을 이용하여 식물플랑크톤의 군집조성을 파악하였다. 국내해역에 존재하는 같은 군집종들 사이에서도 주요색소의 상대적인 비 값은 차이를 보였으며, 국외의 다른 해역에서 제시된 상대적인 비 값과도 상당한 차이를 보였다. 본 연구에서 얻은 비 값을 기초로 식물플랑크톤 군집조성을 분석한 결과, 다른 해역에서 제시된 비 값을 이용하여 분석한 결과와 유의한 차이를 보였다. 우점하는 군집(bacillariophyceae와 dinophytes)에 대해서는 5% 이내에서 차이를 보였으며, 비록 chlorophyll a에 대해서 낮은 기여도를 보이지만 pico와 nano 크기의 군집들(cyanophytes와 prasinophytes)에서는 상당한 차이(2배 이상)를 보였다. 비록 HPLC-CHEMTAX 분석방법은 식물플랑크톤 군집조성 연구에 유용하게 이용되고 있지만, 보다 정확한 결과와 식물플랑크톤의 생리, 생태를 이해하기 위해서는 연구해역에 존재하는 식물플랑크톤 종들에 대한 주요색소의 상대적인 비 값에 대한 연구가 계속적으로 진행되어야 할 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Anderson, R.A., R.R. Bidigare, M.D. Keller and M. Latasa, 1996. A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans. Deep-Sea Res. II, 43: 517-537. https://doi.org/10.1016/0967-0645(95)00095-X
  2. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10: 257-263. https://doi.org/10.3354/meps010257
  3. Bidigare, R.P., T.J. Frank, C. Zastrow and J.M. Brooks, 1986. The distribution of algal chlorophylls and their degradation products in the Southern Ocean. Deep-Sea Res., 33: 923-937.
  4. Burkill, P.H., R.F.C. Mantoura, C.A. Llewellyn and N.J.P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol., 93: 581-590. https://doi.org/10.1007/BF00392796
  5. Everitt, D.A., S.W. Wright, J.K. Volkman, D.P. Thomas and E.J. Lindstrom, 1990. Phytoplankton community compositions in the Southern Western equatorial Pacific determined from chlorophyll and carotenoid pigment distributions. Deep-Sea Res., 37: 975-997. https://doi.org/10.1016/0198-0149(90)90106-6
  6. Furuya, K., M. Hayashi, Y. Yabushita and A. Ishikawa, 2003. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep-Sea Res. II, 50: 367-387. https://doi.org/10.1016/S0967-0645(02)00460-5
  7. Gieskes, W.W. and G.W. Kraay, 1983. Unknown chlorophyll a derivatives in the North Sea and the tropical Atlantic Ocean revealed by HPLC analysis. Limnol. Oceanogr., 28: 757-766. https://doi.org/10.4319/lo.1983.28.4.0757
  8. Goericke, R. and J.P. Montaya, 1998. Estimating the contribution of microalgal taxa to chlorophyll a in the field-variations of pigment ratios under nutrient- and light-limited growth. Mar. Ecol. Prog. Ser., 169: 97-112. https://doi.org/10.3354/meps169097
  9. Hassen, M.B., Z. Drira, A. Hamza, H. Ayadi, F. Akrout and H. Issaoui, 2008. Summer phytoplankton pigments and community composition related to water mass properties in the Gulf of Gabes. Estuar. Coast. Shelf Sci., 77: 645-656. https://doi.org/10.1016/j.ecss.2007.10.027
  10. Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes and J.D.H. Strickland, 1965. Fluorometric determination of chlorophyll. J. Cons. int. Explor. Mer., 30: 3-15. https://doi.org/10.1093/icesjms/30.1.3
  11. Irigoien, X., B. Meyer, R. Harris and D. Harbour, 2004. Using HPLC pigment analysis to investigate phytoplankton taxonomy: the importance of knowing your species. Helgol. Mar. Res., 58: 77-82. https://doi.org/10.1007/s10152-004-0171-9
  12. Jeffrey, S.W., 1997. Application of pigment methods to oceanography. In: Jeffery, S.W., Mantoura, R.F.C., Wright, S.W. (eds) Phytoplankton pigments in oceanography: guidelines to modern methods, UNESCO Publishing, Paris.
  13. Karl, D.M., 1999. A sea of change: Biogeochemical variability in the North Pacific subtropical gyre. Ecosystems, 2: 181-214. https://doi.org/10.1007/s100219900068
  14. Latasa, M. and E. Berdalet, 1994. Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp. J. Plankton Res., 16: 83-94. https://doi.org/10.1093/plankt/16.1.83
  15. Lee, Y.W., D.W. Hwang, G. Kim, W.C. Lee and H.T. Oh, 2009a. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Sci. Total Environ., 407: 3181-3188. https://doi.org/10.1016/j.scitotenv.2008.04.013
  16. Lee, Y.W. and G. Kim, 2007. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuar. Coast. Shelf Sci., 71: 309-317. https://doi.org/10.1016/j.ecss.2006.08.004
  17. Lee, Y.W., G. Kim, W.A. Lim and D.W. Hwang, 2010. A relationship between submarine groundwater-borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnol. Oceanogr., 55: 1-10. https://doi.org/10.4319/lo.2010.55.1.0001
  18. Lee, Y.W., J.M. Lee and G. Kim, 2009b. Identifying sharp hydrographical changes in phytoplankton community structure using HPLC pigment signatures in coastal waters along Jeju Island, Korea. Ocean Sci. J., 44: 1-10. https://doi.org/10.1007/s12601-009-0001-8
  19. Leterlier, R.M., R.R. Bidigare, D.V. Hebel, M. Ondrusek, C.D. Winn and D.M. Karl, 1993. Temporal variability of phytoplankton community structure based on pigment analysis. Limnol. Oceanogr., 38: 1420-1437. https://doi.org/10.4319/lo.1993.38.7.1420
  20. Lohrenz, S.E., C.L. Carroll, A.D. Weidemann and M. Tuel, 2003. Variations in phytoplankton pigments, size structure and community composition related to wind forcing and water mass properties on the North Carolina inner shelf. Cont. Shelf Res., 23:1447-1464. https://doi.org/10.1016/S0278-4343(03)00131-6
  21. Mackey, D.J., H.W. Higgins, M.D. Mackey and D. Holdsworth, 1998. Algal class abundances in the western equatorial Pacific: Estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep-Sea Res. I, 45: 1441-1468. https://doi.org/10.1016/S0967-0637(98)00025-9
  22. Mackey, M.D., D.J. Mackey, H.W. Higgins and S.W. Wright, 1996. CHEMTAX - a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser., 144: 265-283. https://doi.org/10.3354/meps144265
  23. Mantoura, R.F.C. and C.A. Llewellyn, 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. Chim. Acta, 151: 297-314. https://doi.org/10.1016/S0003-2670(00)80092-6
  24. Oh, H.T., D.J. Kim, W.C. Lee, R.H. Jung, S.J. Hong, Y.S. Kang, Y.W. Lee and C. Tilburg, 2008. Composition of phytoplankton in Gamak Bay by CHEMTAX analyses. J. Environ. Sci., 17: 1155-1167. https://doi.org/10.5322/JES.2008.17.10.1155
  25. Park, M.O. and J.S. Park, 1997. HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. J. Korean Soc. Oceanogr., 32: 46-55.
  26. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.H. Peng, A. Kozyr, T. Ono and A.F. Rios, 2004. The oceanic sink for anthropogenic $CO_2$. Science, 305: 367-371. https://doi.org/10.1126/science.1097403
  27. Schluter, L., F. Mohlenberg, H. Havskum and S. Larsen, 2000. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar. Ecol. Prog. Ser., 192: 49-63. https://doi.org/10.3354/meps192049
  28. Strickland, J.D. and T.R. Parsons, 1972. A practical handbook of seawater analysis. 2nd ed. Bull. Fish. Res. Bd. Can., pp. 167.
  29. Welschmeyer, N.A. and N. Hoepffner, 1986. Rapid xanthophyll cycling: an in situ tracer for mixing in the upper ocean. EOS (Trans. Am. Geophys. Un.), 67: 969.
  30. Wright, S.W. and R.L. van den Enden, 2000. Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January-March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res. II, 47:2363-2400. https://doi.org/10.1016/S0967-0645(00)00029-1
  31. Wright, S.W., S.W. Jeffrey, R.F.C. Mantoura, C.A. Llewellyn, T. Bjornland, D. Repeta and N. Welschmeyer, 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser., 77: 183-196. https://doi.org/10.3354/meps077183
  32. Zapata, M., F. Rodríguez and J.L. Garrido, 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase $C_8$ column and pyridinecontaining mobile phases. Mar. Ecol. Prog. Ser., 195: 29-45. https://doi.org/10.3354/meps195029

Cited by

  1. A Study of Variation Characteristics of the Phytoplankton Community by UPLC Located in the Jinju Bay, Korea vol.36, pp.1, 2018, https://doi.org/10.11626/KJEB.2018.36.1.062
  2. Monthly measured primary and new productivities in the Ulleung Basin as a biological "hot spot" in the East/Japan Sea vol.10, pp.2, 2011, https://doi.org/10.5194/bgd-10-2127-2013
  3. Monthly measured primary and new productivities in the Ulleung Basin as a biological "hot spot" in the East/Japan Sea vol.10, pp.7, 2011, https://doi.org/10.5194/bg-10-4405-2013
  4. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific vol.12, pp.20, 2011, https://doi.org/10.5194/bgd-12-16803-2015
  5. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific vol.13, pp.4, 2011, https://doi.org/10.5194/bg-13-1019-2016
  6. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in Gwangyang Bay of the southern coast of the Korean Peninsula vol.15, pp.7, 2011, https://doi.org/10.5194/bg-15-2055-2018
  7. Temperature-Dependent Bifurcated Seasonal Shift of Phytoplankton Community Composition in the Coastal Water off Southwestern Korea vol.54, pp.3, 2011, https://doi.org/10.1007/s12601-019-0025-7
  8. Dominance of Autochthonous Phytoplankton-Derived Particulate Organic Matter in a Low-Turbidity Temperate Estuarine Embayment, Gwangyang Bay, Korea vol.7, pp.None, 2011, https://doi.org/10.3389/fmars.2020.580260
  9. Past, present, and future for the study of Gamak Bay, Korea vol.23, pp.3, 2011, https://doi.org/10.7846/jkosmee.2020.23.3.148
  10. Spatiotemporal Variation in Phytoplankton Community Driven by Environmental Factors in the Northern East China Sea vol.12, pp.10, 2011, https://doi.org/10.3390/w12102695
  11. Impact of Shifting Subpolar Front on Phytoplankton Dynamics in the Western Margin of East/Japan Sea vol.8, pp.None, 2011, https://doi.org/10.3389/fmars.2021.790703
  12. Biochemical Composition of Seston Reflecting the Physiological Status and Community Composition of Phytoplankton in a Temperate Coastal Embayment of Korea vol.13, pp.22, 2011, https://doi.org/10.3390/w13223221