DOI QR코드

DOI QR Code

Forsythiae Fructus and Its Active Component, Arctigenin, Provide Neuroprotection by Inhibiting Neuroinflammation

  • Park, Ji-Ho (Graduate School of East-West Medical Science, Kyung Hee University Global Campus) ;
  • Hong, Ye-Ji (Graduate School of East-West Medical Science, Kyung Hee University Global Campus) ;
  • Moon, Eun-Jung (Graduate School of East-West Medical Science, Kyung Hee University Global Campus) ;
  • Kim, Seul-A (Graduate School of East-West Medical Science, Kyung Hee University Global Campus) ;
  • Kim, Sun-Yeou (Graduate School of East-West Medical Science, Kyung Hee University Global Campus)
  • Received : 2011.06.03
  • Accepted : 2011.08.09
  • Published : 2011.10.30

Abstract

In this study, we found that Forsythiae fructus (FF) and one of its main compounds, arctigenin, significantly inhibited nitric oxide production in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Arctigenin also suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2, and inhibited the activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38. Moreover, it also reduced levels of proinflammatory cytokines, interleukin $1{\beta}$, tumor necrosis factor ${\alpha}$ and prostaglandin E2, and inhibited neuronal death in LPS-treated organotypic hippocampal cultures. Therefore, we suggest that arctigenin may confer a neuroprotective effect via the inhibition of neuroinflammation.

Keywords

References

  1. Awale, S., Lu, J., Kalauni, S. K., Kurashima, Y., Tezuka, Y., Kadota, S. and Esumi, H. (2006) Identifi cation of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res. 66, 1751-1757. https://doi.org/10.1158/0008-5472.CAN-05-3143
  2. Banati, R. B., Gehrmann, J., Schubert, P. and Kreutzberg, G. W. (1993) Cytotoxicity of microglia. Glia. 7, 111-118. https://doi.org/10.1002/glia.440070117
  3. Boje, K. M. and Arora, P. K. (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587, 250-256. https://doi.org/10.1016/0006-8993(92)91004-X
  4. Choi, I. Y., Moon, P. D., Koo, H. N., Myung, N. Y., Kim, S. J., Lee, J. H., Han, S. H., Moon, G., Seo, S. Y., Sung, H. J., Park, R. K., Jeong, H. J., Um, J. Y., Kim H. M. and Hong, S. H. (2007) Observations of Forsythia koreana methanol extract on mast cell-mediated allergic reactions in experimental models. In Vitro Cell Dev. Biol. Anim. 43, 215-221. https://doi.org/10.1007/s11626-007-9040-6
  5. Frotscher, M., Heimrich, B. and Schwegler, H. (1990) Plasticity of identifi ed neurons in slice cultures of hippocampus: a combined Golgi/ electron microscopic and immunocytochemical study. Prog. Brain Res. 83, 323-339. https://doi.org/10.1016/S0079-6123(08)61260-1
  6. Frotscher, M., Zafi rov, S. and Heimrich, B. (1995) Development of identifi ed neuronal types and of specifi c synaptic connections in slice cultures of rat hippocampus. Prog. Neurobiol. 45, vii-xxviii.
  7. Gehrmann, J., Matsumoto, Y. and Kreutzberg, G. W. (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res. Brain Res. Rev. 20, 269-287. https://doi.org/10.1016/0165-0173(94)00015-H
  8. Guo, H., Liu, A. H., Ye, M., Yang, M. and Guo, D. A. (2007) Characterization of phenolic compounds in the fruits of Forsythia suspensa by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom 21, 715-729. https://doi.org/10.1002/rcm.2875
  9. Ha, S. K., Lee, P., Park, J. A., Oh, H. R., Lee, S. Y., Park, J. H., Lee, E. H., Ryu, J. H., Lee, K.. R. and Kim, S. Y. (2008) Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochem. Int. 52, 878-886. https://doi.org/10.1016/j.neuint.2007.10.005
  10. Hanisch, U. K. (2002) Microglia as a source and target of cytokines. Glia. 40, 140-155. https://doi.org/10.1002/glia.10161
  11. Ishihara, K., Yamagishi, N., Saito, Y., Takasaki, M., Konoshima, T. and Hatayama, T. (2006) Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells. Cell Stress Chaperones 11, 154-161. https://doi.org/10.1379/CSC-148R.1
  12. Iwakami, S., Wu, J. B., Ebizuka, Y. and Sankawa, U. (1992) Platelet activating factor (PAF) antagonists contained in medicinal plants: lignans and sesquiterpenes. Chem. Pharm. Bull. (Tokyo) 40, 1196-1198. https://doi.org/10.1248/cpb.40.1196
  13. Jung, H. W., Mahesh, R., Lee, J. G., Lee, S. H., Kim, Y. S. and Park, Y. K. (2010) Pinoresinol from the fruits of Forsythia koreana inhibits infl ammatory responses in LPS-activated microglia. Neurosci. Lett. 480, 215-220. https://doi.org/10.1016/j.neulet.2010.06.043
  14. Kaminska, B. (2005) MAPK signalling pathways as molecular targets for anti-infl ammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. 1754, 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
  15. Kang, H. S., Lee, J. Y. and Kim, C. J. (2008) Anti-infl ammatory activity of arctigenin from Forsythiae Fructus. J. Ethnopharmacol. 116, 305-312. https://doi.org/10.1016/j.jep.2007.11.030
  16. Kim, J. H., Kim, D. H., Baek, S. H., Lee, H. J., Kim, M. R., Kwon, H. J. and Lee, C. H. (2006) Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by down-regulation of NF-kappaB and p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells. Biochem. Pharmacol. 71, 1198-1205. https://doi.org/10.1016/j.bcp.2005.12.031
  17. Kim, J. M., Lee, P., Son, D., Kim, H. and Kim, S. Y. (2003a) Falcarindiol inhibits nitric oxide-mediated neuronal death in lipopolysaccharidetreated organotypic hippocampal cultures. Neuroreport 14, 1941-1944. https://doi.org/10.1097/00001756-200310270-00012
  18. Kim, M. S., Na, H. J., Han, S. W., Jin, J. S., Song, U. Y., Lee, E. J., Song, B. K., Hong, S. H. and Kim, H. M. (2003b) Forsythia fructus inhibits the mast-cell-mediated allergic infl ammatory reactions. Infl ammation. 27, 129-135.
  19. Kim, N. Y., Kang, T. H., Song, E. K., Pae, H. O., Chung, H. T. and Kim, Y. C. (2000) Inhibitory effects of butanol fraction of the aqueous extract of Forsythia koreana on the nitric oxide production by murine macrophage-like RAW 264.7 cells. J. Ethnopharmacol. 73, 323-327. https://doi.org/10.1016/S0378-8741(00)00298-1
  20. Lee, J. Y. and Kim, C. J. (2010) Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic infl ammation and pro-infl ammatory enzymes. Arch. Pharm. Res. 33, 947-957. https://doi.org/10.1007/s12272-010-0619-1
  21. Lee, P., Hur, J., Lee, J., Kim, J., Jeong, J., Kang, I., Kim, S. Y. and Kim, H. (2006) 15,16-dihydrotanshinone I suppresses the activation of BV-2 cell, a murine microglia cell line, by lipopolysaccharide. Neurochem. Int. 48, 60-66. https://doi.org/10.1016/j.neuint.2005.07.004
  22. Lim, H., Lee, J. G., Lee, S. H., Kim, Y. S. and Kim, H. P. (2008) Antiinfl ammatory activity of phylligenin, a lignan from the fruits of Forsythia koreana, and its cellular mechanism of action. J. Ethnopharmacol. 118, 113-117. https://doi.org/10.1016/j.jep.2008.03.016
  23. Minghetti, L. and Levi, G. (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 54, 99-125. https://doi.org/10.1016/S0301-0082(97)00052-X
  24. Miyake, K. (2004) Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol. 12, 186-192. https://doi.org/10.1016/j.tim.2004.02.009
  25. Perry, V. H. and Gordon, S. (1988) Macrophages and microglia in the nervous system. Trends Neurosci. 11, 273-277. https://doi.org/10.1016/0166-2236(88)90110-5
  26. Piao, X. L., Jang, M. H., Cui, J. and Piao, X. (2008) Lignans from the fruits of Forsythia suspensa. Bioorg. Med. Chem. Lett. 18, 1980-1984. https://doi.org/10.1016/j.bmcl.2008.01.115
  27. Yang, Z., Liu, N., Huang, B., Wang, Y., Hu, Y. and Zhu, Y. (2005) Effect of anti-infl uenza virus of Arctigenin in vivo. Zhong Yao Cai. 28, 1012-1014.

Cited by

  1. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes vol.22, pp.6, 2014, https://doi.org/10.4062/biomolther.2014.121
  2. A substituted 3,4-dihydropyrimidinone derivative (compound D22) prevents inflammation mediated neurotoxicity; role in microglial activation in BV-2 cells vol.22, pp.16, 2012, https://doi.org/10.1016/j.bmcl.2012.06.082
  3. The Suppressive Effect of Th2 Cytokines Expression and the Signal Transduction Mechanism in MC/9 Mast Cells by Forsythiae Fructus Extracts vol.28, pp.3, 2014, https://doi.org/10.7778/jpkm.2014.28.3.031
  4. Investigation of the profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii using gas chromatography coupled with flame ionization detector vol.5, pp.3, 2017, https://doi.org/10.1002/fsn3.443
  5. Arctigenin Protects Focal Cerebral Ischemia-Reperfusion Rats through Inhibiting Neuroinflammation vol.35, pp.11, 2012, https://doi.org/10.1248/bpb.b12-00463