References
- Alcaraz, M. J., Vicente, A. M., Araico A., Dominguez J. N., Terencio M.C. and Ferrandiz, M. L. (2004) Role of nuclear factor-kappaB and heme oxygenase-1 in the mechanism of action of an anti-infl ammatory chalcone derivative in RAW 264.7 cells. Br. J. Pharmacol. 142, 1191-1199. https://doi.org/10.1038/sj.bjp.0705821
- An, R. B., Oh, H. and Kim, Y. C. (2005) Phenolic constituents of galla Rhois with hepatoprotective effects on tacrine- and nitrofurantoininduced cytotoxicity in Hep G2 cells. Biol. Pharm. Bull. 28, 2155-2157. https://doi.org/10.1248/bpb.28.2155
- Ata, N., Oku, T., Hattori, M., Fujii, H., Nakajima, M. and Saiki, I. (1996) Inhibition by galloylglucose (GG6-10) of tumor invasion through extracellular matrix and gelatinase-mediated degradation of type IV collagens by metastatic tumor cells. Oncol. Res. 8, 503-511.
- Colasanti, M. and Suzuki, H. (2000) The dual personality of NO. Trends. Pharmacol. Sci. 21, 249-252. https://doi.org/10.1016/S0165-6147(00)01499-1
- Deaciuc, I. V., Doherty, D. E., Burikhanov, R., Lee, E. Y., Stromberg, A. J., Peng, X. and de Villiers, W. J. (2004) Large-scale gene profi ling of the liver in a mouse model of chronic, intragastric ethanol infusion. J. Hepatol. 40, 219-227. https://doi.org/10.1016/j.jhep.2003.10.021
- Dijkstra, G., Blokzijl, H., Bok, L., Homan, M., van Goor, H., Faber, K. N., Jansen, P. L. and Moshage, H. (2004) Opposite effect of oxidative stress on inducible nitric oxide synthase and haem oxygenase-1 expression in intestinal infl ammation: anti-infl ammatory effect of carbon monoxide. J. Pathol. 204, 296-303. https://doi.org/10.1002/path.1656
- Hsu, H. Y., Chu, L. C., Hua, K. F. and Chao, L. K. (2008) Heme oxygenase- 1 mediates the anti-infl ammatory effect of Curcumin within LPS-stimulated human monocytes. J. Cell. Physiol. 215, 603-612. https://doi.org/10.1002/jcp.21206
- Jung, H. J., Kim, S. J., Jeon, W. K., Kim, B. C., Ahn, K., Kim, K., Kim, Y. M., Park, E. H. and Lim, C. J. (2010) Anti-infl ammatory Activity of n-Propyl Gallate Through Down-regulation of NF-kappaB and JNK Pathways. Infl ammation. 34, 352-361.
- Kang, M. S., Oh, J. S., Kang, I. C., Hong, S. J. and Choi, C. H. (2008) Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J. Microbiol. 46, 744-750. https://doi.org/10.1007/s12275-008-0235-7
- Kroncke, K. D., Fehsel, K. and Kolb-Bachofen, V. (1997) Nitric oxide: cytotoxicity versus cytoprotection--how, why, when, and where? Nitric. Oxide. 1, 107-120. https://doi.org/10.1006/niox.1997.0118
- Kwak, M. K., Itoh, K., Yamamoto, M. and Kensler, T. W. (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol. Cell Biol. 22, 2883-2892. https://doi.org/10.1128/MCB.22.9.2883-2892.2002
- Lee, S. H., Kim, J. Y., Seo, G. S., Kim, Y. C. and Sohn, D. H. (2009) Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-infl ammatory heme oxygenase-1 expression in RAW264.7 macrophages. Infl amm. Res. 58: 257-262. https://doi.org/10.1007/s00011-008-8183-6
- Lee, S. H., Seo, G. S. and Sohn, D. H. (2004) Inhibition of lipopolysaccharide- induced expression of inducible nitric oxide synthase by butein in RAW 264.7 cells. Biochem. Biophys. Res. Commun. 323, 125-132. https://doi.org/10.1016/j.bbrc.2004.08.063
- Lin, Y. L. and Lin, J. K. (1997) (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide- induced activity of transcription factor nuclear factor-kappaB. Mol. Pharmacol. 52, 465-472.
- Lowenstein, C. J., Dinerman, J. L. and Snyder, S. H. (1994) Nitric oxide: a physiologic messenger. Ann. Intern. Med. 120, 227-237. https://doi.org/10.7326/0003-4819-120-3-199402010-00009
- Maines, M. D. (1997) The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517-554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
- Mashimo, H. and Goyal, R. K. (1999) Lessons from genetically engineered animal models. IV. Nitric oxide synthase gene knockout mice. Am. J. Physiol. 277, G745-G750.
- Melgarejo, E., Medina, M. A., Sanchez-Jimenez, F. and Urdiales, J. L. (2010) Targeting of histamine producing cells by EGCG: a green dart against infl ammation? J. Physiol. Biochem. 66, 265-270. https://doi.org/10.1007/s13105-010-0033-7
- Murase, T., Kume, N., Hase, T., Shibuya, Y., Nishizawa, Y., Tokimitsu, I. and Kita, T. (1999) Gallates inhibit cytokine-induced nuclear translocation of NF-kappaB and expression of leukocyte adhesion molecules in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 19, 1412-1420. https://doi.org/10.1161/01.ATV.19.6.1412
- Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. and Pickett, C. B. (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 278, 4536-4541. https://doi.org/10.1074/jbc.M207293200
- Otterbein, L. E., Soares, M. P., Yamashita, K. and Bach, F. H. (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24, 449-455. https://doi.org/10.1016/S1471-4906(03)00181-9
- Paine, A., Eiz-Vesper, B., Blasczyk, R. and Immenschuh, S. (2010) Signaling to heme oxygenase-1 and its anti-infl ammatory therapeutic potential. Biochem. Pharmacol. 80, 1895-1903. https://doi.org/10.1016/j.bcp.2010.07.014
- Prawan, A., Kundu, J. K. and Surh, Y. J. (2005) Molecular basis of heme oxygenase-1 induction: implications for chemoprevention and chemoprotection. Antioxid. Redox. Signal 7, 1688-1703. https://doi.org/10.1089/ars.2005.7.1688
- Radtke, O. A., Kiderlen, A. F., Kayser, O. and Kolodziej, H. (2004) Gene expression profi les of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid. Planta. Med. 70, 924-928. https://doi.org/10.1055/s-2004-832618
- Ruan, R. S. (2002) Possible roles of nitric oxide in the physiology and pathophysiology of the mammalian cochlea. Ann. N. Y. Acad. Sci. 962, 260-274. https://doi.org/10.1111/j.1749-6632.2002.tb04073.x
- Ryter, S. W. and Tyrrell, R. M. (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic. Biol. Med. 28, 289-309. https://doi.org/10.1016/S0891-5849(99)00223-3
- Sawle, P., Foresti, R., Mann, B. E., Johnson, T. R., Green, C. J. and Motterlini, R. (2005) Carbon monoxide-releasing molecules (CORMs) attenuate the infl ammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br. J. Pharmacol. 145, 800-810. https://doi.org/10.1038/sj.bjp.0706241
- Son, E., Jeong, J., Lee, J., Jung, D. Y., Cho, G. J., Choi, W. S., Lee, M. S., Kim, S. H., Kim, I. K. and Suk, K. (2005) Sequential induction of heme oxygenase-1 and manganese superoxide dismutase protects cultured astrocytes against nitric oxide. Biochem. Pharmacol. 70, 590-597. https://doi.org/10.1016/j.bcp.2005.05.027
- Stewart, D., Killeen, E., Naquin, R., Alam, S. and Alam, J. (2003) Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J. Biol. Chem. 278, 2396-2402. https://doi.org/10.1074/jbc.M209195200
- Tipoe, G. L., Leung, T. M., Liong, E. C., Lau, T. Y., Fung, M. L. and Nanji, A. A. (2010) Epigallocatechin-3-gallate (EGCG) reduces liver infl ammation, oxidative stress and fi brosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 273, 45-52. https://doi.org/10.1016/j.tox.2010.04.014
Cited by
- In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract vol.146, pp.1, 2013, https://doi.org/10.1016/j.jep.2012.12.034
- Syk and Src are major pharmacological targets of a Cerbera manghas methanol extract with kaempferol-based anti-inflammatory activity vol.151, pp.2, 2014, https://doi.org/10.1016/j.jep.2013.12.009
- Src and Syk are targeted to an anti-inflammatory ethanol extract of Aralia continentalis vol.143, pp.2, 2012, https://doi.org/10.1016/j.jep.2012.07.031
- Dipterocarpus tuberculatus ethanol extract strongly suppresses in vitro macrophage-mediated inflammatory responses and in vivo acute gastritis vol.146, pp.3, 2013, https://doi.org/10.1016/j.jep.2013.01.033
- In Vitroantioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena)stalks in macrophage RAW 264.7 cells vol.27, pp.6, 2016, https://doi.org/10.1080/09540105.2016.1150427
- ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract vol.154, pp.1, 2014, https://doi.org/10.1016/j.jep.2014.04.008
- Methanol extract of Evodia lepta displays Syk/Src-targeted anti-inflammatory activity vol.148, pp.3, 2013, https://doi.org/10.1016/j.jep.2013.05.030
- 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages vol.37, pp.3, 2013, https://doi.org/10.5142/jgr.2013.37.293
- (5-Hydroxy-4-oxo-4H-pyran-2-yl)methyl 6-hydroxynaphthalene-2-carboxylate, a kojic acid derivative, inhibits inflammatory mediator production via the suppression of Syk/Src and NF-κB activation vol.20, pp.1, 2014, https://doi.org/10.1016/j.intimp.2014.02.019
- TANK-binding kinase 1 and Janus kinase 2 play important roles in the regulation of mitogen-activated protein kinase phosphatase-1 expression after toll-like receptor 4 activation vol.233, pp.11, 2018, https://doi.org/10.1002/jcp.26787
- Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase vol.26, pp.6, 2011, https://doi.org/10.4062/biomolther.2018.179