DOI QR코드

DOI QR Code

Fabrication of Hydroxyapatite Ceramics to Mimic the Natural Bone Structure

  • Moon, Dae-Hee (Department of Nanomedical Engineering, Pusan National University) ;
  • Ryu, Su-Chak (Department of Nanomedical Engineering, Pusan National University)
  • Received : 2011.08.12
  • Accepted : 2011.09.14
  • Published : 2011.09.30

Abstract

The objective of our study was to produce an imitation bone material consisting of hydroxyapatite with a compact and spongy structure. This study shows the ideal content of $SiO_2$ and the sintering temperature to produce imitation bone that has the mechanical properties of natural bone. On the basis of our determination of the ideal conditions, a compact part was produced and its mechanical properties were tested. A compact part made of 0.5 wt% $SiO_2$ and sintered at $1350^{\circ}C$ showed excellent mechanical properties. The bioactivity of the compact part under this condition was tested, and it was found to be bioactive. The porous part was produced by controlling the powder size, and the dual structure was manufactured by combining the compact and porous parts. A water permeability test confirmed that the dual structure had an interconnected pore structure. Therefore, this dual-body structure is feasible for use in the creation of implants.

Keywords

References

  1. J. A. Hubbell, "Biomaterials in Tissue Engineering," Nat Biotech, 13 [6] 565-76 (1995). https://doi.org/10.1038/nbt0695-565
  2. Langer R and Vacanti JP, "Tissue Engineering," Science, 260 [5110] 920-26 (1993). https://doi.org/10.1126/science.8493529
  3. W. W. Minuth, M. Sittinger, and S. Kloth, "Tissue Engineering: Generation of Differentiated Artificial Tissues for Biomedical Applications," Cell and Tissue Research, 291 [1] 1-11 (1997). https://doi.org/10.1007/s004410050974
  4. R. B. Martin, "Bone as a Ceramic Composite Material," Materials Science Forum, 293 5-16 (1999). https://doi.org/10.4028/www.scientific.net/MSF.293.5
  5. C. R. Nunes, S. J. Simske, R. Sachdeva, and L. M. Wolford, "Long-term Ingrowth and Apposition of Porous Hydroxylapatite Implants," J. Biomed. Mater. Res., 36 [4] 560-63 (1997). https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<560::AID-JBM15>3.0.CO;2-E
  6. H. Yoshikawa and A. Myoui,"Bone Tissue Engineering with Porous Hydroxyapatite Ceramics," J. Artificial Organs, 8 [3] 131-36 (2005). https://doi.org/10.1007/s10047-005-0292-1
  7. E. A. Monroe, W. Votava, D. B. Bass, and J. M. Mullen, "New Calcium Phosphate Ceramic Material for Bone and Tooth Implants," J. Dental Research, 50 [4] 860-61 (1971). https://doi.org/10.1177/00220345710500041201
  8. N. Tamai, A. Myoui, T. Tomita, T. Nakase, J. Tanaka, T. Ochi, and H. Yoshikawa, "Novel Hydroxyapatite Ceramics with an Interconnective Porous Structure Exhibit Superior Osteoconduction in Vivo," J. Biomed. Mater. Res., 59 [1] 110-17 (2002). https://doi.org/10.1002/jbm.1222
  9. S. R. Levitt, P. H. Crayton, E. A. Monroe, and R. A. Condrate, "Forming Method for Apatite Prostheses," J. Biomed. Mater. Res., 3 [4] 683-84 (1969). https://doi.org/10.1002/jbm.820030413
  10. M. Ogiso, "Reassessment of Long-term use of Dense HA as Dental Implant: Case Report," J. Biomed. Mater. Res., 43 [3] 318-20 (1998). https://doi.org/10.1002/(SICI)1097-4636(199823)43:3<318::AID-JBM13>3.0.CO;2-B
  11. T.-M. G. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran, "Mechanical and in Vivo Performance of Hydroxyapatite Implants with Controlled Architectures," Biomaterials, 23 [5] 1283-93 (2002). https://doi.org/10.1016/S0142-9612(01)00243-5
  12. R. A. Ayers, S. J. Simske, C. R. Nunes, and L. M. Wolford, "Long-term Bone Ingrowth and Residual Microhardness of Porous Block Hydroxyapatite Implants in Humans," J. Oral and Maxillofacial Surgery, 56 [11] 1297-301 (1998). https://doi.org/10.1016/S0278-2391(98)90613-9
  13. L. Le Guehennec, A. Soueidan, P. Layrolle, and Y. Amouriq, "Surface Treatments of Titanium Dental Implants for Rapid Osseointegration," Dental Materials, 23 [7] 844-54 (2007). https://doi.org/10.1016/j.dental.2006.06.025
  14. M. H. Fathi, M. Salehi, A. Saatchi, V. Mortazavi, and S. B. Moosavi, "In Vitro Corrosion Behavior of Bioceramic, Metallic, and Bioceramic-metallic Coated Stainless Steel Dental Implants," Dental Materials, 19 [3] 188-98 (2003). https://doi.org/10.1016/S0109-5641(02)00029-5
  15. J. P. Schmitz, J. O. Hollinger, and S. B. Milam, "Reconstruction of Bone using Calcium Phosphate Bone Cements: A Critical Review," J. Oral and Maxillofacial Surgery, 57 [9] 1122-26 (1999). https://doi.org/10.1016/S0278-2391(99)90338-5
  16. Z. Mazor, M. Peleg, A. K. Garg, and G. Chaushu, "The Use of Hydroxyapatite Bone Cement for Sinus Floor Augmentation with Simultaneous Implant Placement in the Atrophic Maxilla. A Report of 10 Cases," J. Periodontology, 71 [7] 1187-94 (2000). https://doi.org/10.1902/jop.2000.71.7.1187
  17. S. Deb, M. Braden, and W. Bonfield, "Water Absorption Characteristics of Modified Hydroxyapatite Bone Cements," Biomaterials, 16 [14] 1095-100 (1995). https://doi.org/10.1016/0142-9612(95)98906-U
  18. S. C. Ryu, S.-H. Min, and Y.-M. Park, "Mechanical Properties of Hydroxyapatite ${\beta}-TCP$ Composite with Changing $SiO_2$ Contents," Kor. J. Mater. Res., 17 [9] 480-83 (2011). https://doi.org/10.3740/MRSK.2007.17.9.480
  19. S. Blindow, M. Pulkin, D. Koch, G. Grathwohl, and K. Rezwan, "$Hydroxyapatite/SiO_2$ Composites via Freeze Casting for Bone Tissue Engineering," Adv. Eng. Mater., 11 [11] 875-84 (2009). https://doi.org/10.1002/adem.200900208
  20. M. O. Dean, "Fabrication of Hydroxyapatite Ceramic with Controlled Porosity," J. Mater. Sci.: Mater. Medicine, 8 [4] 227-32 (1997). https://doi.org/10.1023/A:1018591724140
  21. J. Y. Kim, J. W. Lee, S. J. Lee, E. K. Park, S. Y. Kim, and D. W. Cho, "Development of a Bone Scaffold using HA Nanopowder and Micro-stereolithography Technology," Microelectro. Engi., 84 [5-8] 1762-65 (2005).
  22. S. H. Kim, B. K. Lim, F. Sun, K. Koh, S. C. Ryu, H. S. Kim, and J. Lee, "Preparation of High Flexible Composite Film of Hydroxyapatite and Chitosan," Polymer Bulletin, 62 [1] 111-8 (2009). https://doi.org/10.1007/s00289-008-1008-5
  23. S. C. Ryu, B. K. Lim, F. Sun, K. Koh, D. W. Han, and J. Lee, "Regeneration of a Micro-Scratched Tooth Enamel Layer by Nanoscale Hydroxyapatite Solution," Bull. Kor. Chem. Soc., 30 [1] 887-90 (2009). https://doi.org/10.5012/bkcs.2009.30.4.887
  24. B. K. Lim, S. C. Ryu, F. Sun, K. Koh, D. W. Han, and J. Lee, "Hydroxyapatite Coating on Damaged Tooth Surfaces by Immersion," Biomedical Materials, 4 [2] 025017 (2009). https://doi.org/10.1088/1748-6041/4/2/025017
  25. N. Kot, M. Timutin, and F. Korkusuz, "Fabrication and Characterization of Porous Tricalcium Phosphate Ceramics," Ceram. International, 30 [2] 205-11 (2004). https://doi.org/10.1016/S0272-8842(03)00090-7
  26. M. Sayer, A. D. Stratilatov, J. Reid, L. Calderin, M. J. Stott, X. Yin, M. MacKenzie, T. J. N. Smith, J. A. Hendry, and S. D. Langstaff, "Structure and Composition of Silicon-stabilized Tricalcium Phosphate," Biomaterials, 24 [3] 369-82 (2003). https://doi.org/10.1016/S0142-9612(02)00327-7
  27. S. Padilla, J. Rombn, S. Sbnchez-Salcedo, and M. Vallet-Regi, "$Hydroxyapatite/SiO_2-CaO-P_2O_5$ Glass Materials: In Vitro Bioactivity and Biocompatibility," Acta Biomaterialia, 2 [3] 331-42 (2006). https://doi.org/10.1016/j.actbio.2006.01.006
  28. A. Mortier, J. Lemaitre, L. Rodrique, and P. G. Rouxhet, "Synthesis and Thermal Behavior of Well-crystallized Calcium-Deficient Phosphate Apatite," J. Solid State Chem., 78 [2] 215-19 (1989). https://doi.org/10.1016/0022-4596(89)90099-6
  29. R. L. Fullman, "Measurement of Particle Sizes in Opaque Bodies," Trans. Metall. Soc. AIME, 197 447-52 (1953).