DOI QR코드

DOI QR Code

MINISCREW STABILITY REGARDING DESIGN OF MINISCREW AND THICKNESS OF CORTICAL BONE

교정용 미니스크류의 디자인과 피질골의 두께에 따른 역학적 안정성 평가

  • Kweon, Young-Sun (Department of Pediatric Dentistry, School of Dentistry, Seoul National University) ;
  • Hyun, Hong-Keun (Department of Pediatric Dentistry, School of Dentistry, Seoul National University) ;
  • Kim, Young-Jae (Department of Pediatric Dentistry, School of Dentistry, Seoul National University) ;
  • Kim, Jung-Wook (Department of Pediatric Dentistry, School of Dentistry, Seoul National University)
  • 권영선 (서울대학교 치과대학 소아치과학교실) ;
  • 현홍근 (서울대학교 치과대학 소아치과학교실) ;
  • 김영재 (서울대학교 치과대학 소아치과학교실) ;
  • 김정욱 (서울대학교 치과대학 소아치과학교실)
  • Received : 2011.05.20
  • Accepted : 2011.08.18
  • Published : 2011.08.31

Abstract

The aim of this study was to suggest a design for an orthodontic miniscrew which may work most favorably in the thin cortical bone of the adolescent. In this study, orthodontic miniscrews with different diameters, lengths, and body types were manufactured and implanted in two artificial bone samples with different cortical bone thickness. Maximum insertion torque, maximum removal torque, and lateral alteration torque were measured. As a result, the bone quality, body type, diameter, and the length all had their effects on the maximum insertion torque, maximum removal torque, and lateral alteration torque. Cortical bone thickness was the most important factor. In initial stability, conical types showed better results than cylindrical types. Increase in the diameter had favorable effects in achieving mechanical stability. Increase in the length did not have as much influence as the other factors did on the initial stability, but there was a statistically significant difference between screws of 6 mm and 8 mm lengths(p<0.05). In conclusion, the conical type screw with a diameter of 1.8 mm is most favorable in the thin cortical bone of the adolescent. In terms of length, the 8 mm screw is expected to perform better than the 6 mm screw.

본 연구의 목적은 소아 청소년의 얇은 피질골에서 안정성을 가지는 미니스크류 디자인을 제시하고자 하는 것이다. 직경, 길이, 몸체모양을 달리한 교정용 미니스크류를 피질골의 두께를 달리한 두 종류의 인조골 시편에 식립하여 최대 식립 토크, 최대 제거 토크 및 측방 변위 토크를 측정하였다. 연구결과 피질골의 두께 및 미니스크류의 직경, 길이, 몸체모양은 모두 최대 식립 토크, 최대 제거 토크, 측방 변위 토크에 유의한 영향을 미쳤다. 피질골의 두께가 가장 중요한 요소로 나타났으며 원추형이 원통형보다 초기 고정력이 우수하고, 직경이 증가할수록 역학적 고정력 확보에 유리하였다. 길이의 증가는 다른 요소에 비해 초기 고정력 확보에 미치는 영향이 크지 않으나 6 mm와 8 mm는 고정력 확보에 통계적으로 유의한 차이가 있었다(p<0.05). 피질골이 얇은 소아 청소년의 골에서 미니스크류의 안정성은 원추형, 직경 1.8 mm가 유리하며, 길이도 6 mm 보다는 8 mm가 유리하다.

Keywords

References

  1. Santiago RC, De Paula FO, Fraga MR, et al. : Correlation between miniscrew stability and bone mineral density in orthodontic patients. Am J Orthod Dentofacial Orthop, 136:243-250, 2009. https://doi.org/10.1016/j.ajodo.2007.08.031
  2. Park HS, Jeong SH, Kwon OH : Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop, 130:18-25, 2006. https://doi.org/10.1016/j.ajodo.2004.11.032
  3. Salmoria KK, Tanaka OM, Guariza-Filho O, et al. : Insertional torque and axial pull-out strength of mini-implants in mandibles of dogs. Am J Orthod Dentofacial Orthop, 133:790-790, 2008.
  4. Florvaag B, Kneuertz P, Lazar F, et al. : Biomechanical properties of Orthodontic Miniscrews. An in-vitro study. J Orofac Orthop, 71:53-67, 2010. https://doi.org/10.1007/s00056-010-9933-y
  5. Reicheneder C, Rottner K, Bokan I, et al. : Mechanical loading of orthodontic miniscrews-significance and problems : an experimental study. Biomed Tech, 53:242-245, 2008. https://doi.org/10.1515/BMT.2008.038
  6. Brettin BT, Grosland NM, Qian F, et al. : Bicortical vs monocortical orthodontic skeletal anchorage. Am J Orthod Dentofacial Orthop, 134:625-635, 2008. https://doi.org/10.1016/j.ajodo.2007.01.031
  7. Miyawaki S, Koyama I, Inoue M, et al. : Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop, 124:373-378, 2003. https://doi.org/10.1016/S0889-5406(03)00565-1
  8. Fritz U, Ehmer A, Diedrich P : Clinical suitability of titanium microscrews for orthodontic anchorage-preliminary experiences. J Orofac Orthop, 65:410-418, 2004.
  9. Cheng SJ, Tseng IY, Lee JJ, Kok SH : A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants, 19:100-106, 2004.
  10. Cha JY, Takano-Yamamoto T, Hwang CJ : The Effect of Miniscrew Taper Morphology on Insertion and Removal Torque in Dogs. Int J Oral Maxillofac Implants, 25:777-783, 2010.
  11. Lim SA, Cha JY, Hwang CJ : Insertion Torque of Orthodontic Miniscrews According to Changes in Shape, Diameter and Length. Angle Orthod, 78: 234-240, 2008. https://doi.org/10.2319/121206-507.1
  12. Papadopoulos MA, Tarawneh F : The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 103:6-15, 2007. https://doi.org/10.1016/S1079-2104(07)00249-1
  13. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. : Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res, 17:109-114, 2006. https://doi.org/10.1111/j.1600-0501.2005.01211.x
  14. Kim JW, Cho IS, Lee SJ, et al. : Mechanical analysis of the taper shape and length of orthodontic mini-implant for initial stability. Korean J Orthod, 36:55-62, 2006.
  15. Chen Y, Kyung HM, Gao L, et al. : Mechanical properties of self-drilling orthodontic micro-implants with different diameters. Angle Orthod, 80:821-827, 2010. https://doi.org/10.2319/103009-607.1
  16. Suzuki EY, Suzuki B, Aramrattana A, et al. : Assessment of miniscrew implant stability by resonance frequency analysis : a study in human cadavers. J Oral Maxillofac Surg, 68:2682-2689, 2010. https://doi.org/10.1016/j.joms.2010.05.083
  17. 임수민, 양연미, 김재곤 등 : 혼합치열기의 miniscrew를 이용한 교정치료. 대한소아치과학회지, 35:367-375, 2008.
  18. Wilmes B, Rademacher C, Olthoff G, Drescher D : Parameters Affecting Primary Stability of Orthodontic Mini-implants. J Orofac Orthop, 67: 162-174, 2006. https://doi.org/10.1007/s00056-006-0611-z
  19. Swasty D, Lee JS, Huang JC, et al. : Anthropometric analysis of the human mandibular cortical bone as assessed by cone-beam computed tomography. J Oral Maxillofac Surg, 67:491-500, 2009. https://doi.org/10.1016/j.joms.2008.06.089
  20. 백병주, 김미라, 노용관 등 : 아동 및 청소년기의 하악각부피질골 두께에 관한 방사선학적 연구. 대한소아치과학회지, 25:225-233, 1998.
  21. Motoyoshi M, Yoshida T, Ono A, Shimizu N : Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants. 22:779-784, 2007.
  22. Maki K, Miller A, Okano T, Shibasaki Y : Changes in cortical bone mineralization in the developing mandible : a three-dimensional quantitative computed tomography study. J Bone Miner Res, 15: 700-709, 2000.
  23. Wang Z, Zhao Z, Xue J, et al. : Pullout strength of miniscrews placed in anterior mandibles of adult and adolescent dogs : A microcomputed tomographic analysis. Am J Orthod Dentofacial Orthop, 137:100- 107, 2010. https://doi.org/10.1016/j.ajodo.2008.01.025
  24. Homolka P, Beer A, Birkfellner W, et al. : Bone mineral density measurement with dental quantitative CT prior to dental implant placement in cadaver mandibles : pilot study. Radiology, 224:247-252, 2002. https://doi.org/10.1148/radiol.2241010948
  25. 임종원, 김왕식, 김일규 등 : 교정용 미니스크류 식립 시 스크류의 길이, 직경 및 피질골 두께에 따른 응력 분포에 관한 3차원 유한요소법적 연구. 대한치과교정학회지, 33: 11-20, 2003.
  26. Motoyoshi M, Uemura M, Ono A, et al. : Factors affecting the long-term stability of orthodontic miniimplants. Am J Orthod Dentofacial Orthop, 137: 588.e1-5, 2010. https://doi.org/10.1016/j.ajodo.2009.05.019