Neurobiology of Addiction Based on Neuroimaging Evidence

중독 정신 병리의 이해 : 뇌영상 연구를 중심으로

  • Min, Jung-Ah (Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine) ;
  • Kim, Dai-Jin (Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine)
  • 민정아 (가톨릭대학교 의과대학 서울성모병원 정신과학교실) ;
  • 김대진 (가톨릭대학교 의과대학 서울성모병원 정신과학교실)
  • Received : 2011.04.07
  • Accepted : 2011.04.27
  • Published : 2011.05.31

Abstract

Substance addiction is a chronically relapsing disorder that has been characterized by a vicious cycle composed of intoxication, craving/anticipation, withdrawal, and response inhibition/bingeing. Here we summarize the findings from neuroimaging studies in addiction according to these behavioral components and suggest the integrated neurobiological model of drug addiction and related brain correlates. The roles of various prefrontal regions, thalamus, memory circuit, anterior cingulated, and insula were also suggested in addition to those of classical mesolimbic dopaminergic system and its responsivity. Limited studies of behavioral addiction demonstrated a similarity with substance addiction on the neurobiological basis. Based on the current understanding of neurobiology of addiction, further researches on interactions of behavioral components and their brain correlates, behavioral addiction, and therapeutic applications will be desired.

Keywords

References

  1. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science 1997;278:52-58. https://doi.org/10.1126/science.278.5335.52
  2. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010;35:217-238. https://doi.org/10.1038/npp.2009.110
  3. Daglish MR, Nutt DJ. Brain imaging studies in human addicts. Eur Neuropsychopharmacol 2003;13:453-458. https://doi.org/10.1016/j.euroneuro.2003.08.006
  4. Blum K, Braverman ER, Holder JM, Lubar JF, Monastra VJ, Miller D, et al. Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs 2000;32 Suppl:i-iv, 1-112.
  5. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 2002;159:1642-1652. https://doi.org/10.1176/appi.ajp.159.10.1642
  6. Dom G, Sabbe B, Hulstijn W, van den Brink W. Substance use disorders and the orbitofrontal cortex: systematic review of behavioural decision-making and neuroimaging studies. Br J Psychiatry 2005; 187:209-220. https://doi.org/10.1192/bjp.187.3.209
  7. Nutt DJ. Addiction: brain mechanisms and their treatment implications. Lancet 1996;347:31-36. https://doi.org/10.1016/S0140-6736(96)91561-5
  8. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Quantification of Behavior Sackler Colloquium: Addiction: Beyond dopamine reward circuitry. Proc Natl Acad Sci U S A 2011.
  9. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 1997;386:830-833. https://doi.org/10.1038/386830a0
  10. Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, et al. Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 2004;47 Suppl 1:227-241. https://doi.org/10.1016/j.neuropharm.2004.06.032
  11. Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Ding YS, Logan J, et al. Relationship between psychostimulant-induced "high" and dopamine transporter occupancy. Proc Natl Acad Sci U S A 1996;93: 10388-10392. https://doi.org/10.1073/pnas.93.19.10388
  12. Volkow ND, Fowler JS, Wang GJ. Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. J Psychopharmacol 1999;13:337-345. https://doi.org/10.1177/026988119901300406
  13. London ED, Cascella NG, Wong DF, Phillips RL, Dannals RF, Links JM, et al. Cocaine-induced reduction of glucose utilization in human brain. A study using positron emission tomography and [fluorine 18] -fluorodeoxyglucose. Arch Gen Psychiatry 1990;47:567-574. https://doi.org/10.1001/archpsyc.1990.01810180067010
  14. London ED, Broussolle EP, Links JM, Wong DF, Cascella NG, Dannals RF, et al. Morphine-induced metabolic changes in human brain. Studies with positron emission tomography and [fluorine 18]fluorodeoxyglucose. Arch Gen Psychiatry 1990;47:73-81. https://doi.org/10.1001/archpsyc.1990.01810130075010
  15. Volkow ND, Wang GJ, Fowler JS, Hitzemann R, Angrist B, Gatley SJ, et al. Association of methylphenidate-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers: implications in addiction. Am J Psychiatry 1999;156:19-26. https://doi.org/10.1176/ajp.156.1.19
  16. Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C, Valentine A, et al. Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication. Psychiatry Res 1996;67: 29-38. https://doi.org/10.1016/0925-4927(96)02817-X
  17. Nakamura H, Tanaka A, Nomoto Y, Ueno Y, Nakayama Y. Activation of fronto-limbic system in the human brain by cigarette smoking: evaluated by a CBF measurement. Keio J Med 2000;49 Suppl 1: A122-A124.
  18. Mathew RJ, Wilson WH, Humphreys DF, Lowe JV, Wiethe KE. Regional cerebral blood flow after marijuana smoking. J Cereb Blood Flow Metab 1992;12:750-758. https://doi.org/10.1038/jcbfm.1992.106
  19. Volkow ND, Mullani N, Gould L, Adler SS, Guynn RW, Overall JE, et al. Effects of acute alcohol intoxication on cerebral blood flow measured with PET. Psychiatry Res 1988;24:201-209. https://doi.org/10.1016/0165-1781(88)90063-7
  20. Tiihonen J, Kuikka J, Hakola P, Paanila J, Airaksinen J, Eronen M, et al. Acute ethanol-induced changes in cerebral blood flow. Am J Psychiatry 1994;151:1505-1508. https://doi.org/10.1176/ajp.151.10.1505
  21. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, et al. Acute effects of cocaine on human brain activity and emotion. Neuron 1997;19:591-611. https://doi.org/10.1016/S0896-6273(00)80374-8
  22. Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG, et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 1998;155:1009-1015. https://doi.org/10.1176/ajp.155.8.1009
  23. Wallace EA, Wisniewski G, Zubal G, vanDyck CH, Pfau SE, Smith EO, et al. Acute cocaine effects on absolute cerebral blood flow. Psychopharmacology (Berl) 1996;128:17-20. https://doi.org/10.1007/s002130050104
  24. Volkow ND, Wang GJ, Ma Y, Fowler JS, Zhu W, Maynard L, et al. Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J Neurosci 2003;23:11461-11468.
  25. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006;29:565-598. https://doi.org/10.1146/annurev.neuro.29.051605.113009
  26. Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, et al. Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 1996;93:12040-12045. https://doi.org/10.1073/pnas.93.21.12040
  27. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O'Brien CP. Limbic activation during cue-induced cocaine craving. Am J Psychiatry 1999;156:11-18. https://doi.org/10.1176/ajp.156.1.11
  28. Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, et al. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 2000;157:1789-1798. https://doi.org/10.1176/appi.ajp.157.11.1789
  29. Daglish MR, Weinstein A, Malizia AL, Wilson S, Melichar JK, Britten S, et al. Changes in regional cerebral blood flow elicited by craving memories in abstinent opiate-dependent subjects. Am J Psychiatry 2001;158:1680-1686. https://doi.org/10.1176/appi.ajp.158.10.1680
  30. Di Ciano P, Everitt BJ. Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology 2001;25: 341-360. https://doi.org/10.1016/S0893-133X(01)00235-4
  31. Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 2004;27:765-776. https://doi.org/10.1016/j.neubiorev.2003.11.015
  32. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive- sensitization theory of addiction. Brain Res Brain Res Rev 1993;18:247-291. https://doi.org/10.1016/0165-0173(93)90013-P
  33. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci U S A 2002;99:523-528. https://doi.org/10.1073/pnas.012470999
  34. Everitt BJ, Dickinson A, Robbins TW. The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev 2001;36:129-138. https://doi.org/10.1016/S0165-0173(01)00088-1
  35. Wang GJ, Volkow ND, Fowler JS, Cervany P, Hitzemann RJ, Pappas NR, et al. Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci 1999;64:775-784. https://doi.org/10.1016/S0024-3205(98)00619-5
  36. Volkow ND, Fowler JS, Wolf AP, Hitzemann R, Dewey S, Bendriem B, et al. Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 1991;148:621-626. https://doi.org/10.1176/ajp.148.5.621
  37. Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science 1999;284:1979-1981. https://doi.org/10.1126/science.284.5422.1979
  38. Chua P, Krams M, Toni I, Passingham R, Dolan R. A functional anatomy of anticipatory anxiety. Neuroimage 1999;9:563-571. https://doi.org/10.1006/nimg.1999.0407
  39. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 2005;162:1403-1413. https://doi.org/10.1176/appi.ajp.162.8.1403
  40. Cornish JL, Duffy P, Kalivas PW. A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 1999;93:1359-1367. https://doi.org/10.1016/S0306-4522(99)00214-6
  41. Sinha R. The role of stress in addiction relapse. Curr Psychiatry Rep 2007;9:388-395. https://doi.org/10.1007/s11920-007-0050-6
  42. Littleton J. Can craving be modeled in animals? The relapse prevention perspective. Addiction 2000;95 Suppl 2:S83-S90. https://doi.org/10.1046/j.1360-0443.95.8s2.18.x
  43. Heinz A, LOber S, Georgi A, Wrase J, Hermann D, Rey ER, et al. Reward craving and withdrawal relief craving: assessment of different motivational pathways to alcohol intake. Alcohol Alcohol 2003;38: 35-39. https://doi.org/10.1093/alcalc/agg005
  44. Hutcheson DM, Everitt BJ, Robbins TW, Dickinson A. The role of withdrawal in heroin addiction: enhances reward or promotes avoidance? Nat Neurosci 2001;4:943-947. https://doi.org/10.1038/nn0901-943
  45. Volkow ND, Wang GJ, Fowler JS, Hitzemann R, Gatley SJ, Dewey SS, et al. Enhanced sensitivity to benzodiazepines in active cocaineabusing subjects: a PET study. Am J Psychiatry 1998;155:200-206.
  46. Gorelick DA, Kim YK, Bencherif B, Boyd SJ, Nelson R, Copersino M, et al. Imaging brain mu-opioid receptors in abstinent cocaine users: time course and relation to cocaine craving. Biol Psychiatry 2005; 57:1573-1582. https://doi.org/10.1016/j.biopsych.2005.02.026
  47. Volkow ND, Hitzemann R, Wang GJ, Fowler JS, Wolf AP, Dewey SL, et al. Long-term frontal brain metabolic changes in cocaine abusers. Synapse 1992;11:184-190. https://doi.org/10.1002/syn.890110303
  48. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Jayne M, et al. Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci 2007;27: 12700-12706. https://doi.org/10.1523/JNEUROSCI.3371-07.2007
  49. Martinez D, Gil R, Slifstein M, Hwang DR, Huang Y, Perez A, et al. Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry 2005;58:779-786. https://doi.org/10.1016/j.biopsych.2005.04.044
  50. Martinez D, Broft A, Foltin RW, Slifstein M, Hwang DR, Huang Y, et al. Cocaine dependence and d2 receptor availability in the functional subdivisions of the striatum: relationship with cocaine-seeking behavior. Neuropsychopharmacology 2004;29:1190-1202. https://doi.org/10.1038/sj.npp.1300420
  51. Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, et al. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 2010;35:591-604. https://doi.org/10.1038/npp.2009.185
  52. Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, et al. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A 1998;95:14494-14499. https://doi.org/10.1073/pnas.95.24.14494
  53. Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ. Selective attention to emotional stimuli in a verbal go/no-go task: an fMRI study. Neuroreport 2000;11:1739-1744. https://doi.org/10.1097/00001756-200006050-00028
  54. Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN, et al. A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. J Cogn Neurosci 1997; 9:835. https://doi.org/10.1162/jocn.1997.9.6.835
  55. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 1998;280:747-749. https://doi.org/10.1126/science.280.5364.747
  56. Carter CS, Macdonald AM, Botvinick M, Ross LL, Stenger VA, Noll D, et al. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc Natl Acad Sci U S A 2000; 97:1944-1948. https://doi.org/10.1073/pnas.97.4.1944
  57. Goldstein RZ, Volkow ND, Wang GJ, Fowler JS, Rajaram S. Addiction changes orbitofrontal gyrus function: involvement in response inhibition. Neuroreport 2001;12:2595-2599. https://doi.org/10.1097/00001756-200108080-00060
  58. Lundqvist T. Cognitive consequences of cannabis use: comparison with abuse of stimulants and heroin with regard to attention, memory and executive functions. Pharmacol Biochem Behav 2005;81:319- 330. https://doi.org/10.1016/j.pbb.2005.02.017
  59. Homer BD, Solomon TM, Moeller RW, Mascia A, DeRaleau L, Halkitis PN. Methamphetamine abuse and impairment of social functioning: a review of the underlying neurophysiological causes and behavioral implications. Psychol Bull 2008;134:301-310. https://doi.org/10.1037/0033-2909.134.2.301
  60. Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 2003;19:1085-1094. https://doi.org/10.1016/S1053-8119(03)00113-7
  61. Paulus MP, Hozack N, Frank L, Brown GG, Schuckit MA. Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biol Psychiatry 2003;53:65-74. https://doi.org/10.1016/S0006-3223(02)01442-7
  62. Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, et al. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology 2002;26:53-63. https://doi.org/10.1016/S0893-133X(01)00334-7
  63. Sofuoglu M. Cognitive enhancement as a pharmacotherapy target for stimulant addiction. Addiction 2010;105:38-48. https://doi.org/10.1111/j.1360-0443.2009.02791.x
  64. Sofuoglu M, Sugarman DE, Carroll KM. Cognitive function as an emerging treatment target for marijuana addiction. Exp Clin Psychopharmacol 2010;18:109-119. https://doi.org/10.1037/a0019295
  65. Goldstein RZ, Craig AD, Bechara A, Garavan H, Childress AR, Paulus MP, et al. The neurocircuitry of impaired insight in drug addiction. Trends Cogn Sci 2009;13:372-380. https://doi.org/10.1016/j.tics.2009.06.004
  66. Silani G, Bird G, Brindley R, Singer T, Frith C, Frith U. Levels of emotional awareness and autism: an fMRI study. Soc Neurosci 2008;3:97-112. https://doi.org/10.1080/17470910701577020
  67. King-Casas B, Sharp C, Lomax-Bream L, Lohrenz T, Fonagy P, Montague PR. The rupture and repair of cooperation in borderline personality disorder. Science 2008;321:806-810. https://doi.org/10.1126/science.1156902
  68. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci 2004; 7:189-195. https://doi.org/10.1038/nn1176
  69. Craig AD. How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci 2009;10:59-70. https://doi.org/10.1038/nrn2555
  70. Laureys S. The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 2005;9:556-559.
  71. Goldstein RZ, Alia-Klein N, Tomasi D, Zhang L, Cottone LA, Maloney T, et al. Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am J Psychiatry 2007;164:43-51. https://doi.org/10.1176/appi.ajp.164.1.43
  72. Goldstein RZ, Alia-Klein N, Tomasi D, Carrillo JH, Maloney T, Woicik PA, et al. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. Proc Natl Acad Sci U S A 2009;106:9453-9458. https://doi.org/10.1073/pnas.0900491106
  73. Goldstein RZ, Parvaz MA, Maloney T, Alia-Klein N, Woicik PA, Telang F, et al. Compromised sensitivity to monetary reward in current cocaine users: an ERP study. Psychophysiology 2008;45:705- 713. https://doi.org/10.1111/j.1469-8986.2008.00670.x
  74. Rinn W, Desai N, Rosenblatt H, Gastfriend DR. Addiction denial and cognitive dysfunction: a preliminary investigation. J Neuropsychiatry Clin Neurosci 2002;14:52-57. https://doi.org/10.1176/appi.neuropsych.14.1.52
  75. Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science 2007;315:531-534. https://doi.org/10.1126/science.1135926
  76. Garavan H, Stout JC. Neurocognitive insights into substance abuse. Trends Cogn Sci 2005;9:195-201. https://doi.org/10.1016/j.tics.2005.02.008
  77. Hester R, Nestor L, Garavan H. Impaired error awareness and anterior cingulate cortex hypoactivity in chronic cannabis users. Neuropsychopharmacology 2009;34:2450-2458. https://doi.org/10.1038/npp.2009.67
  78. Grusser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M, et al. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl) 2004;175:296-302. https://doi.org/10.1007/s00213-004-1828-4
  79. Paulus MP, Tapert SF, Schuckit MA. Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry 2005;62:761-768. https://doi.org/10.1001/archpsyc.62.7.761
  80. Grant JE, Brewer JA, Potenza MN. The neurobiology of substance and behavioral addictions. CNS Spectr 2006;11:924-930. https://doi.org/10.1017/S109285290001511X
  81. Crockford DN, el-Guebaly N. Psychiatric comorbidity in pathological gambling: a critical review. Can J Psychiatry 1998;43:43-50. https://doi.org/10.1177/070674379804300104
  82. Petry NM, Stinson FS, Grant BF. Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 2005;66:564-574. https://doi.org/10.4088/JCP.v66n0504
  83. van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Brain imaging studies in pathological gambling. Curr Psychiatry Rep 2010;12:418-425. https://doi.org/10.1007/s11920-010-0141-7
  84. Linnet J, Moller A, Peterson E, Gjedde A, Doudet D. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction 2011;106:383-390. https://doi.org/10.1111/j.1360-0443.2010.03126.x
  85. Hollander E, Pallanti S, Baldini Rossi N, Sood E, Baker BR, Buchsbaum MS. Imaging monetary reward in pathological gamblers. World J Biol Psychiatry 2005;6:113-120. https://doi.org/10.1080/15622970510029768
  86. Reuter J, Raedler T, Rose M, Hand I, Glascher J, Buchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 2005;8:147-148. https://doi.org/10.1038/nn1378
  87. Potenza MN. Should addictive disorders include non-substance-related conditions? Addiction 2006;101 Suppl 1:142-151.
  88. Potenza MN, Leung HC, Blumberg HP, Peterson BS, Fulbright RK, Lacadie CM, et al. An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. Am J Psychiatry 2003;160:1990-1994. https://doi.org/10.1176/appi.ajp.160.11.1990
  89. Potenza MN, Steinberg MA, Skudlarski P, Fulbright RK, Lacadie CM, Wilber MK, et al. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch Gen Psychiatry 2003;60:828-836. https://doi.org/10.1001/archpsyc.60.8.828
  90. Crockford DN, Goodyear B, Edwards J, Quickfall J, el-Guebaly N. Cue-induced brain activity in pathological gamblers. Biol Psychiatry 2005;58:787-795. https://doi.org/10.1016/j.biopsych.2005.04.037
  91. Daglish M, Lingford-Hughes A, Nutt D. Human functional neuroimaging connectivity research in dependence. Rev Neurosci 2005;16: 151-157.
  92. Gu H, Salmeron BJ, Ross TJ, Geng X, Zhan W, Stein EA, et al. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage 2010; 53:593-601. https://doi.org/10.1016/j.neuroimage.2010.06.066
  93. Kelly C, Zuo XN, Gotimer K, Cox CL, Lynch L, Brock D, et al. Reduced interhemispheric resting state functional connectivity in cocaine addiction. Biol Psychiatry 2011;69:684-692. https://doi.org/10.1016/j.biopsych.2010.11.022
  94. Ho MK, Goldman D, Heinz A, Kaprio J, Kreek MJ, Li MD, et al. Breaking barriers in the genomics and pharmacogenetics of drug addiction. Clin Pharmacol Ther 2010;88:779-791. https://doi.org/10.1038/clpt.2010.175
  95. Fregni F, Liguori P, Fecteau S, Nitsche MA, Pascual-Leone A, Boggio PS. Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry 2008; 69:32-40. https://doi.org/10.4088/JCP.v69n0105
  96. Fecteau S, Fregni F, Boggio PS, Camprodon JA, Pascual-Leone A. Neuromodulation of decision-making in the addictive brain. Subst Use Misuse 2010;45:1766-1786. https://doi.org/10.3109/10826084.2010.482434
  97. Eichhammer P, Johann M, Kharraz A, Binder H, Pittrow D, Wodarz N, et al. High-frequency repetitive transcranial magnetic stimulation decreases cigarette smoking. J Clin Psychiatry 2003;64:951- 953. https://doi.org/10.4088/JCP.v64n0815