Biomarkers for Alzheimer's Dementia : Focus on Neuroimaging

알츠하이머 치매의 바이오마커-뇌영상 연구를 중심으로

  • Won, Wang-Youn (Department of Psychiatry, The Catholic University of Korea College of Medicine) ;
  • Lee, Chang-Uk (Department of Psychiatry, The Catholic University of Korea College of Medicine)
  • 원앙연 (가톨릭대학교 의과대학 정신과학교실) ;
  • 이창욱 (가톨릭대학교 의과대학 정신과학교실)
  • Received : 2011.04.08
  • Accepted : 2011.04.29
  • Published : 2011.05.31

Abstract

Recent advances in brain imaging research are remarkable. Among them, many results from a variety of neuroimaging modalities in Alzheimer's dementia accompanied by the development and growing of imaging techniques have been presented in the research field. In this review we are focused on the imaging biomarkers for the Alzheimer's dementia to investigate the pathophysiologic mechanism. Future research on biomarkers for Alzheimer's dementia will provide more diverse and complex mechanisms or hypotheses than have been proposed in the current hypothesis about the pathogenesis of Alzheimer's dementia.

Keywords

References

  1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82:239-259. https://doi.org/10.1007/BF00308809
  2. Schmitt FA, Davis DG, Wekstein DR, Smith CD, Ashford JW, Markesbery WR. "Preclinical" AD revisited: neuropathology of cognitively normal older adults. Neurology 2000;55:370-376. https://doi.org/10.1212/WNL.55.3.370
  3. Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci 1996;16:4491-4500.
  4. Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 2001;58:1395-1402. https://doi.org/10.1001/archneur.58.9.1395
  5. Jobst KA, Smith AD, Barker CS, Wear A, King EM, Smith A, et al. Association of atrophy of the medial temporal lobe with reduced blood flow in the posterior parietotemporal cortex in patients with a clinical and pathological diagnosis of Alzheimer's disease. J Neurol Neurosurg Psychiatry 1992;55:190-194. https://doi.org/10.1136/jnnp.55.3.190
  6. De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, et al. Frequency of hippocampal formation atrophy in normal aging and Alzheimer's disease. Neurobiol Aging 1997;18:1-11. https://doi.org/10.1016/S0197-4580(96)00213-8
  7. Frisoni GB. Structural imaging in the clinical diagnosis of Alzheimer's disease: problems and tools. J Neurol Neurosurg Psychiatry 2001;70:711-718. https://doi.org/10.1136/jnnp.70.6.711
  8. Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 2002;1:13-21. https://doi.org/10.1016/S1474-4422(02)00002-9
  9. Bosscher L, Scheltens PH. MRI of the temporal lobe. Evidence based dementia. Oxford: Blackwell;2001.
  10. Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 2005;64:1032-1039. https://doi.org/10.1212/01.WNL.0000154530.72969.11
  11. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, et al. Dynamics of gray matter loss in Alzheimer's disease. J Neurosci 2003;23:994-1005.
  12. Carlson NE, Moore MM, Dame A, Howieson D, Silbert LC, Quinn JF, et al. Trajectories of brain loss in aging and the development of cognitive impairment. Neurology 2008;70:828-833. https://doi.org/10.1212/01.wnl.0000280577.43413.d9
  13. Whitwell JL, Jack CR Jr. Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping. Top Magn Reson Imaging 2005;16:409-425. https://doi.org/10.1097/01.rmr.0000245457.98029.e1
  14. Barnes J, Whitwell JL, Frost C, Josephs KA, Rossor M, Fox NC. Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Arch Neurol 2006;63:1434-1439. https://doi.org/10.1001/archneur.63.10.1434
  15. Jack CR Jr, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999;52:1397-1403. https://doi.org/10.1212/WNL.52.7.1397
  16. Wang PN, Lirng JF, Lin KN, Chang FC, Liu HC. Prediction of Alzheimer's disease in mild cognitive impairment: a prospective study in Taiwan. Neurobiol Aging 2006;27:1797-1806. https://doi.org/10.1016/j.neurobiolaging.2005.10.002
  17. Ewers M, Teipel SJ, Dietrich O, SchOnberg SO, Jessen F, Heun R, et al. Multicenter assessment of reliability of cranial MRI. Neurobiol Aging 2006;27:1051-1059. https://doi.org/10.1016/j.neurobiolaging.2005.05.032
  18. Jack CR Jr, Petersen RC, Xu Y, O'Brien PC, Smith GE, Ivnik RJ, et al. Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease. Neurology 1998;51:993-999. https://doi.org/10.1212/WNL.51.4.993
  19. Laakso MP, Lehtovirta M, Partanen K, Riekkinen PJ, Soininen H. Hippocampus in Alzheimer's disease: a 3-year follow-up MRI study. Biol Psychiatry 2000;47:557-561. https://doi.org/10.1016/S0006-3223(99)00167-5
  20. Krasuski JS, Alexander GE, Horwitz B, Daly EM, Murphy DG, Rapoport SI, et al. Volumes of medial temporal lobe structures in patients with Alzheimer's disease and mild cognitive impairment (and in healthy controls). Biol Psychiatry 1998;43:60-68. https://doi.org/10.1016/S0006-3223(97)00013-9
  21. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hanninen T, Laakso MP, et al. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 2004;25:303- 310. https://doi.org/10.1016/S0197-4580(03)00084-8
  22. Teipel SJ, Pruessner JC, Faltraco F, Born C, Rocha-Unold M, Evans A, et al. Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J Neurol 2006;253:794- 800. https://doi.org/10.1007/s00415-006-0120-4
  23. Xu Y, Jack CR Jr, O'Brien PC, Kokmen E, Smith GE, Ivnik RJ, et al. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 2000;54:1760-1767. https://doi.org/10.1212/WNL.54.9.1760
  24. Du AT, Schuff N, Amend D, Laakso MP, Hsu YY, Jagust WJ, et al. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. J Neurol Neurosurg Psychiatry 2001;71:441-447. https://doi.org/10.1136/jnnp.71.4.441
  25. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage 2000;11:805-821. https://doi.org/10.1006/nimg.2000.0582
  26. Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 2001;14: 298-309. https://doi.org/10.1006/nimg.2001.0848
  27. Busatto GF, Garrido GE, Almeida OP, Castro CC, Camargo CH, Cid CG, et al. A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer's disease. Neurobiol Aging 2003;24:221-231. https://doi.org/10.1016/S0197-4580(02)00084-2
  28. Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 2002;13:1939-1943. https://doi.org/10.1097/00001756-200210280-00022
  29. Pennanen C, Testa C, Laakso MP, Hallikainen M, Helkala EL, Hanninen T, et al. A voxel based morphometry study on mild cognitive impairment. J Neurol Neurosurg Psychiatry 2005;76:11-14. https://doi.org/10.1136/jnnp.2004.035600
  30. Teipel SJ, Alexander GE, Schapiro MB, Moller HJ, Rapoport SI, Hampel H. Age-related cortical grey matter reductions in non-demented Down's syndrome adults determined by MRI with voxelbased morphometry. Brain 2004;127:811-824. https://doi.org/10.1093/brain/awh101
  31. Teipel SJ, Hampel H. Neuroanatomy of Down syndrome in vivo: a model of preclinical Alzheimer's disease. Behav Genet 2006;36: 405-415. https://doi.org/10.1007/s10519-006-9047-x
  32. Teipel SJ, Born C, Ewers M, Bokde AL, Reiser MF, Moller HJ, et al. Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment. Neuroimage 2007;38:13-24. https://doi.org/10.1016/j.neuroimage.2007.07.008
  33. Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC. Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex 2005;15: 995-1001. https://doi.org/10.1093/cercor/bhh200
  34. Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H, et al. Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiol Aging 2008;29:23-30. https://doi.org/10.1016/j.neurobiolaging.2006.09.013
  35. Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. J Neurosci 2006;26:10222-10231. https://doi.org/10.1523/JNEUROSCI.2250-06.2006
  36. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101: 4637-4642. https://doi.org/10.1073/pnas.0308627101
  37. Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum Brain Mapp 2005;26: 231-239. https://doi.org/10.1002/hbm.20160
  38. Bokde AL, Lopez-Bayo P, Meindl T, Pechler S, Born C, Faltraco F, et al. Functional connectivity of the fusiform gyrus during a facematching task in subjects with mild cognitive impairment. Brain 2006;129:1113-1124. https://doi.org/10.1093/brain/awl051
  39. Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW. Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 2005;360:1093-1108. https://doi.org/10.1098/rstb.2005.1647
  40. Stahl R, Dietrich O, Teipel SJ, Hampel H, Reiser MF, Schoenberg SO. White matter damage in Alzheimer disease and mild cognitive impairment: assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology 2007;243:483-492. https://doi.org/10.1148/radiol.2432051714
  41. Sydykova D, Stahl R, Dietrich O, Ewers M, Reiser MF, Schoenberg SO, et al. Fiber connections between the cerebral cortex and the corpus callosum in Alzheimer's disease: a diffusion tensor imaging and voxel-based morphometry study. Cereb Cortex 2007;17:2276- 2282. https://doi.org/10.1093/cercor/bhl136
  42. Teipel SJ, Stahl R, Dietrich O, Schoenberg SO, Perneczky R, Bokde AL, et al. Multivariate network analysis of fiber tract integrity in Alzheimer's disease. Neuroimage 2007;34:985-995. https://doi.org/10.1016/j.neuroimage.2006.07.047
  43. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM. NAcetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007;81:89-131. https://doi.org/10.1016/j.pneurobio.2006.12.003
  44. Kantarci K. 1H magnetic resonance spectroscopy in dementia. Br J Radiol 2007;80:S146-S152. https://doi.org/10.1259/bjr/60346217
  45. Burns A, Philpot MP, Costa DC, Ell PJ, Levy R. The investigation of Alzheimer's disease with single photon emission tomography. J Neurol Neurosurg Psychiatry 1989;52:248-253. https://doi.org/10.1136/jnnp.52.2.248
  46. Hunter R, McLuskie R, Wyper D, Patterson J, Christie JE, Brooks DN, et al. The pattern of function-related regional cerebral blood flow investigated by single photon emission tomography with 99mTc-HMPAO in patients with presenile Alzheimer's disease and Korsakoff's psychosis. Psychol Med 1989;19:847-855. https://doi.org/10.1017/S0033291700005560
  47. Jobst KA, Smith AD, Barker CS, Wear A, King EM, Smith A, et al. Association of atrophy of the medial temporal lobe with reduced blood flow in the posterior parietotemporal cortex in patients with a clinical and pathological diagnosis of Alzheimer's disease. J Neurol Neurosurg Psychiatry 1992;55:190-194. https://doi.org/10.1136/jnnp.55.3.190
  48. Harris GJ, Lewis RF, Satlin A, English CD, Scott TM, Yurgelun- Todd DA, et al. Dynamic susceptibility contrast MR imaging of regional cerebral blood volume in Alzheimer disease: a promising alternative to nuclear medicine. AJNR Am J Neuroradiol 1998;19: 1727-1732.
  49. Huang C, Eidelberg D, Habeck C, Moeller J, Svensson L, Tarabula T, et al. Imaging markers of mild cognitive impairment: multivariate analysis of CBF SPECT. Neurobiol Aging 2007;28:1062-1069. https://doi.org/10.1016/j.neurobiolaging.2006.05.017
  50. Huang C, Wahlund LO, Almkvist O, Elehu D, Svensson L, Jonsson T, et al. Voxel- and VOI-based analysis of SPECT CBF in relation to clinical and psychological heterogeneity of mild cognitive impairment. Neuroimage 2003;19:1137-1144. https://doi.org/10.1016/S1053-8119(03)00168-X
  51. Borroni B, Anchisi D, Paghera B, Vicini B, Kerrouche N, Garibotto V, et al. Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging 2006;27:24-31. https://doi.org/10.1016/j.neurobiolaging.2004.12.010
  52. Hirao K, Ohnishi T, Hirata Y, Yamashita F, Mori T, Moriguchi Y, et al. The prediction of rapid conversion to Alzheimer's disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 2005;28:1014-1021. https://doi.org/10.1016/j.neuroimage.2005.06.066
  53. Kogure D, Matsuda H, Ohnishi T, Asada T, Uno M, Kunihiro T, et al. Longitudinal evaluation of early Alzheimer's disease using brain perfusion SPECT. J Nucl Med 2000;41:1155-1162.
  54. Hoffman JM, Welsh-Bohmer KA, Hanson M, Crain B, Hulette C, Earl N, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med 2000;41:1920-1928.
  55. Sakamoto S, Ishii K, Sasaki M, Hosaka K, Mori T, Matsui M, et al. Differences in cerebral metabolic impairment between early and late onset types of Alzheimer's disease. J Neurol Sci 2002;200:27-32. https://doi.org/10.1016/S0022-510X(02)00114-4
  56. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 1997;42:85-94. https://doi.org/10.1002/ana.410420114
  57. Nestor PJ, Fryer TD, Smielewski P, Hodges JR. Limbic hypometabolism in Alzheimer's disease and mild cognitive impairment. Ann Neurol 2003;54:343-351. https://doi.org/10.1002/ana.10669
  58. Becker JT, Mintun MA, Aleva K, Wiseman MB, Nichols T, DeKosky ST. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease. Neurology 1996;46:692-700. https://doi.org/10.1212/WNL.46.3.692
  59. Moulin CJ, Laine M, Rinne JO, Kaasinen V, Sipila H, Hiltunen J, et al. Brain function during multi-trial learning in mild cognitive impairment: a PET activation study. Brain Res 2007;1136:132-141. https://doi.org/10.1016/j.brainres.2006.12.021
  60. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 2005;32:486-510. https://doi.org/10.1007/s00259-005-1762-7
  61. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med 2008;49:390-398. https://doi.org/10.2967/jnumed.107.045385
  62. Mosconi L, De Santi S, Li Y, Li J, Zhan J, Tsui WH, et al. Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimer's disease using FDG-PET. Eur J Nucl Med Mol Imaging 2006;33:210-221. https://doi.org/10.1007/s00259-005-1956-z
  63. Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ, et al. Cortical abnormalities in Alzheimer's disease. Ann Neurol 1984; 16:649-654. https://doi.org/10.1002/ana.410160605
  64. Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, et al. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer's disease. J Nucl Med 2006;47:1778-1786.
  65. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci U S A 2004;101:284-289. https://doi.org/10.1073/pnas.2635903100
  66. Mosconi L, De Santi S, Brys M, Tsui WH, Pirraglia E, Glodzik-Sobanska L, et al. Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biol Psychiatry 2008;63:609-618. https://doi.org/10.1016/j.biopsych.2007.05.030
  67. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 2003; 30:1104-1113. https://doi.org/10.1007/s00259-003-1194-1
  68. Mosconi L, Brys M, Switalski R, Mistur R, Glodzik L, Pirraglia E, et al. Maternal family history of Alzheimer's disease predisposes to reduced brain glucose metabolism. Proc Natl Acad Sci U S A 2007;104:19067-19072. https://doi.org/10.1073/pnas.0705036104
  69. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004;55:306-319. https://doi.org/10.1002/ana.20009
  70. Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, et al. Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 2006;67:1575-1580. https://doi.org/10.1212/01.wnl.0000240117.55680.0a
  71. Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006;67:446-452. https://doi.org/10.1212/01.wnl.0000228230.26044.a4
  72. Lockhart A, Lamb JR, Osredkar T, Sue LI, Joyce JN, Ye L, et al. PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptiderelated cerebral amyloidosis. Brain 2007;130:2607-2615. https://doi.org/10.1093/brain/awm191
  73. Klunk WE, Price JC, Mathis CA, Tsopelas ND, Lopresti BJ, Ziolko SK, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci 2007; 27:6174-6184. https://doi.org/10.1523/JNEUROSCI.0730-07.2007
  74. Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, et al. Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A 2009; 106:6820-6825. https://doi.org/10.1073/pnas.0900345106
  75. Wolk DA, Price JC, Saxton JA, Snitz BE, James JA, Lopez OL, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 2009;65:557-568. https://doi.org/10.1002/ana.21598
  76. Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S, et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer's disease. Eur J Nucl Med Mol Imaging 2008;35:2169-2181. https://doi.org/10.1007/s00259-008-0833-y
  77. Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Nagren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 2009;73:754-760. https://doi.org/10.1212/WNL.0b013e3181b23564
  78. Morris JC, Roe CM, Grant EA, Head D, Storandt M, Goate AM, et al. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 2009;66:1469-1475. https://doi.org/10.1001/archneurol.2009.269
  79. Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 2006;355:2652-2663. https://doi.org/10.1056/NEJMoa054625