DOI QR코드

DOI QR Code

Spectroscopic Identification of Isomeric Trimethylbenzyl Radicals Generated from 1,2,3,4-Tetramethylbenzene

  • Yoon, Young-Wook (Department of Chemistry and The Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Sang-Kuk (Department of Chemistry and The Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2011.05.31
  • Accepted : 2011.07.08
  • Published : 2011.08.20

Abstract

The visible vibronic emission spectrum was recorded from the corona discharge of precursor 1,2,3,4-tetramethylbenzene with a large amount of inert carrier gas helium using a pinhole-type glass nozzle coupled with corona excited supersonic expansion. The spectrum showed a series of vibronic bands in the $D_1{\rightarrow}D_0$ electronic transition of jet-cooled benzyl-type radicals formed from the precursor in a corona excitation. The analysis confirmed that two isomeric radicals, 2,3,4- and 2,3,6-trimethylbenzyl radicals, were produced as a result of removal of a hydrogen atom from the methyl group at different substitution positions. For each isomeric product, the electronic transition and a few vibrational mode frequencies were determined in the ground electronic state.

Keywords

References

  1. Branciard-Larcher, C.; Migirdicyan, E. Chem. Phys. 1973, 2, 95. https://doi.org/10.1016/0301-0104(73)80065-5
  2. Schuler, H.; Reinbeck, L.; Kaberle, A. R. Z. Naturforsh 1952, 7A, 421.
  3. Walker, S.; Barrow, R. F. Trans. Faraday Soc. 1954, 50, 541. https://doi.org/10.1039/tf9545000541
  4. Bindley, T. F.; Watts, A. T.; Watts, S. Trans. Faraday Soc. 1962, 58, 849. https://doi.org/10.1039/tf9625800849
  5. Bindley, T. F.; Watts, A. T.; Watts, S. Trans. Faraday Soc. 1964, 60, 1. https://doi.org/10.1039/tf9646000001
  6. Carlton, T. R.; Thrush, B. A. Chem. Phys. Lett. 1986, 125, 547. https://doi.org/10.1016/0009-2614(86)87096-8
  7. Hiratsuka, H.; Mori, K.; Shizuke, H.; Fukushima, M.; Obi, K. Chem. Phys. Lett. 1989, 157, 35. https://doi.org/10.1016/0009-2614(89)87203-3
  8. Cossart-Magos, C.; Leach, S. J. Chem. Phys. 1976, 64, 4006. https://doi.org/10.1063/1.432034
  9. Fukushima, M.; Obi, K. J. Chem. Phys. 1990, 93, 8488. https://doi.org/10.1063/1.459710
  10. Suh, M. H.; Lee, S. K.; Miller, T. A. J. Mol. Spectrosc. 1999, 194, 211. https://doi.org/10.1006/jmsp.1998.7787
  11. Lin, T.-Y. D.; Miller, T. A. J. Phys. Chem. 1990, 94, 3554. https://doi.org/10.1021/j100372a037
  12. Selco, J. I.; Carrick, P. G. J. Mol. Spectrosc. 1989, 137, 13. https://doi.org/10.1016/0022-2852(89)90264-6
  13. Selco, J. I.; Carrick, P. G. J. Mol. Spectrosc. 1995, 173, 277. https://doi.org/10.1006/jmsp.1995.1233
  14. Lee, G. W.; Lee, S. K. J. Chem. Phys. 2007, 126, 214308. https://doi.org/10.1063/1.2740629
  15. Lee, G. W.; Lee, S. K. J. Phys. Chem. A 2007, 111, 6003. https://doi.org/10.1021/jp066488t
  16. Ahn, H. G.; Lee, G. W.; Kim, T. K.; Lee, S. K. Chem. Phys. Lett. 2008, 465, 193.
  17. Petruska, J. J. Chem. Phys. 1961, 34, 1111. https://doi.org/10.1063/1.1731709
  18. Engelking, P. C. Rev. Sci. Instrum. 1986, 57, 2274. https://doi.org/10.1063/1.1138696
  19. Droege, A. T.; Engelking, P. C. Chem. Phys. Lett. 1983, 96, 316. https://doi.org/10.1016/0009-2614(83)80680-0
  20. Lee, S. K. Chem. Phys. Lett. 2002, 358, 110. https://doi.org/10.1016/S0009-2614(02)00595-X
  21. Han, M. S.; Choi, I. S.; Lee, S. K. Bull. Korean Chem. Soc. 1996, 17, 991.
  22. Weise, M. L.; Smith, M. W.; Glennon, B. M. Atomic Transition Probabilities; NSRD-NBS4; NBS: Gaithsburg, MD, 1966.
  23. Cossart-Magos, C.; Cossart, D. Mol. Phys. 1988, 65, 627. https://doi.org/10.1080/00268978800101291
  24. Banwell, C. N.; McCash, E. M. Fundamentals of Molecular Spectroscopy, 4th ed.; McGraw-Hill: New York, NY, 1994.
  25. Fujiwara, M.; Tanimoto, Y. J. Phys. Chem. 1994, 98, 5695. https://doi.org/10.1021/j100073a020
  26. Lejeune, V.; Despres, A.; Fourmann, B.; Benoist d'Azy, O.; Migirdicyan, E. J. Phys. Chem. 1987, 91, 6620. https://doi.org/10.1021/j100311a013
  27. Lee, S. K.; Baek, D. Y. Chem. Phys. Lett. 1999, 304, 39. https://doi.org/10.1016/S0009-2614(99)00294-8
  28. Ahn, H. G.; Lee, G. W.; Kim, T. K.; Lee, S. K. Bull. Korean Chem. Soc. 2008, 29, 2341. https://doi.org/10.5012/bkcs.2008.29.12.2341
  29. Varsanyi, G. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives; John Wiley & Sons: New York, NY, 1974.
  30. Yoon, Y. W.; Lee, S. W.; Lee, S. K. Bull. Korean Chem. Soc. 2010, 31, 2479. https://doi.org/10.5012/bkcs.2010.31.9.2479
  31. Yoon, Y. W.; Lee, S. W.; Lee, S. K. Bull. Korean Chem. Soc. 2010, 31, 2783. https://doi.org/10.5012/bkcs.2010.31.10.2783
  32. Wilson, E. B. Phys. Rev. 1934, 45, 706. https://doi.org/10.1103/PhysRev.45.706

Cited by

  1. Spectroscopic Evidence of Jet-Cooled p-Chloro-α-Methylbenzyl Radical in Corona Excitation vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2943
  2. The electronic spectroscopy of resonance-stabilised hydrocarbon radicals vol.35, pp.2, 2016, https://doi.org/10.1080/0144235X.2016.1166830
  3. Confirmed assignments of isomeric dimethylbenzyl radicals generated by corona discharge vol.135, pp.21, 2011, https://doi.org/10.1063/1.3663962
  4. Vibronic Assignments of Isomeric Trimethylbenzyl Radicals : Revisited vol.35, pp.3, 2011, https://doi.org/10.5012/bkcs.2014.35.3.737