• Title/Summary/Keyword: Trimethylbenzyl radicals

Search Result 3, Processing Time 0.017 seconds

Vibronic Assignments of Isomeric Trimethylbenzyl Radicals : Revisited

  • Yi, Eun Hye;Yoon, Young Wook;Lee, Sang Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.737-742
    • /
    • 2014
  • The vibronic emission spectra of isomeric trimethylbenzyl radicals were reassigned based on substituent effect on electronic transition energy as well as ab initio calculation of the benzyl radical. The electronic transition energy of three isomeric jet-cooled trimethylbenzyl radicals produced by corona discharge of 1,2,3,5-tetramethylbenzene were analyzed using the empirical data of three isomeric methylbenzyl radicals. Calculated data were obtained by summing up the shifts measured from methylbenzyl radicals as well as taking the position and alignment of substituents on the benzene ring into account. The revised assignments show better agreement with observation, and rationalize the validity of the model developed to explain the substituent effect on electronic transition energy of benzyl radicals.

Isomeric Trimethylbenzyl Radicals Produced by Corona Discharge of 1,2,3,5-Tetramethylbenzene

  • Lee, Gi-Woo;Yoon, Young-Wook;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3389-3394
    • /
    • 2011
  • Isomeric trimethylbenzyl radicals were generated and vibronically excited from precursor 1,2,3,5-tetramethylbenzene, isodurene, with a large amount inert carrier gas helium in a corona excited supersonic expansion (CESE) using a pinhole-type glass nozzle. A long-path monochromator was used to record the visible vibronic emission spectra of the jet-cooled benzyl-type radicals in the $D_1{\rightarrow}D_0$ electronic transition. From the analysis of the spectra, we identified the evidence of the presence of three isomeric trimethylbenzyl radicals in the corona discharge, and obtained the electronic energy and a few vibrational mode frequencies in the ground electronic state for each isomer.

Spectroscopic Identification of Isomeric Trimethylbenzyl Radicals Generated from 1,2,3,4-Tetramethylbenzene

  • Yoon, Young-Wook;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2751-2755
    • /
    • 2011
  • The visible vibronic emission spectrum was recorded from the corona discharge of precursor 1,2,3,4-tetramethylbenzene with a large amount of inert carrier gas helium using a pinhole-type glass nozzle coupled with corona excited supersonic expansion. The spectrum showed a series of vibronic bands in the $D_1{\rightarrow}D_0$ electronic transition of jet-cooled benzyl-type radicals formed from the precursor in a corona excitation. The analysis confirmed that two isomeric radicals, 2,3,4- and 2,3,6-trimethylbenzyl radicals, were produced as a result of removal of a hydrogen atom from the methyl group at different substitution positions. For each isomeric product, the electronic transition and a few vibrational mode frequencies were determined in the ground electronic state.