DOI QR코드

DOI QR Code

Wavelength Conversion Lanthanide(III)-cored Complex for Highly Efficient Dye-sensitized Solar Cells

  • Oh, Jung-Hwan (Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials (ITRC) and Center for Next Generation Photovoltaic System (WCU), Korea University) ;
  • Song, Hae-Min (Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials (ITRC) and Center for Next Generation Photovoltaic System (WCU), Korea University) ;
  • Eom, Yu-Kyung (Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials (ITRC) and Center for Next Generation Photovoltaic System (WCU), Korea University) ;
  • Ryu, Jung-Ho (Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials (ITRC) and Center for Next Generation Photovoltaic System (WCU), Korea University) ;
  • Ju, Myung-Jong (Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials (ITRC) and Center for Next Generation Photovoltaic System (WCU), Korea University) ;
  • Kim, Hwan-Kyu (Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials (ITRC) and Center for Next Generation Photovoltaic System (WCU), Korea University)
  • Received : 2011.06.23
  • Accepted : 2011.07.07
  • Published : 2011.08.20

Abstract

Lanthanide(III)-cored complex as a wavelength conversion material has been successfully designed and synthesized for highly efficient dye-sensitized solar cells, for the first time, since light with a short wavelength has not been effectively used for generating electric power owing to the limited absorption of these DSSCs in the UV region. A black dye (BD) was chosen and used as a sensitizer, because BD has a relatively weak light absorption at shorter wavelengths. The overall conversion efficiency of the BD/WCM device was remarkably increased, even with the relatively small amount of WCM added to the device. The enhancement in $V_{oc}$ by WCM, like DCA, could be correlated with the suppression of electron recombination between the injected electrons and $I_3{^-}$ ions. Furthermore, the short-circuit current density was significantly increased by WCM with a strong UV light-harvesting effect. The energy transfer from the Eu(III)-cored complex to the $TiO_2$ film occurred via the dye, so the number of electrons injected into the $TiO_2$ surface increased, i.e., the short-circuit current density was increased. As a result, BD/WCM-sensitized solar cells exhibit superior device performance with the enhanced conversion efficiency by a factor of 1.22 under AM 1.5 sunlight: The photovoltaic performance of the BD/WCM-based DSSC exhibited remarkably high values, $J_{sc}$ of 17.72 mA/$cm^2$, $V_{oc}$ of 720 mV, and a conversion efficiency of 9.28% at 100 mW $cm^{-2}$, compared to a standard DSSC with $J_{sc}$ of 15.53 mA/$cm^2$, $V_{oc}$ of 689 mV, and a conversion efficiency of 7.58% at 100 mW $cm^{-2}$. Therefore, the Eu(III)-cored complex is a promising candidate as a new wavelength conversion coadsorbent for highly efficient dye-sensitized solar cells to improve UV light harvesting through energy transfer processes. The abstract should be a single paragraph which summaries the content of the article.

Keywords

References

  1. Kim, H. K.; Roh, S.-G.; Hong, K.-S.; Ka, J.-W.; Baek, N. S.; Oh, J. B.; Nah, M. K.; Cha, Y. H.; Ko, J. Macromol. Res. 2007, 5, 272.
  2. Kim, H. K.; Oh, J. B.; Baek, N. S.; Roh, S.-G.; Nah, M. K.; Kim,Y. H. Bull. Korean Chem. Soc. 2005, 26, 201. https://doi.org/10.5012/bkcs.2005.26.2.201
  3. Eliseeva, S. V.; Bünzli, J.-C. G. New J. Chem. 2011, DOI: 10.1039/ c0nj00969e (published on the web, February 2, 2011.
  4. Bunzli, J.-C. G.; Eliseeva, S. V. J. Rare Earths. 2010, 28, 824. https://doi.org/10.1016/S1002-0721(09)60208-8
  5. Eliseeva, S. V.; Bunzli, J.-C. G. Chem. Soc. Rev. 2010, 39, 189. https://doi.org/10.1039/b905604c
  6. Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D. Chem. Soc. Rev. 2011, 40, 926. https://doi.org/10.1039/c0cs00130a
  7. Oyamada, T.; Kawamura, Y.; Koyama, T.; Sasabe, H.; Adachi, C. Adv. Mater. 2004, 16, 1082. https://doi.org/10.1002/adma.200400090
  8. Kang, T.-S.; Harrison, B. S.; Bouguettaya, M.; Foley, T. J.; Boncella, J. M.; Schanze, K. S.; Reynolds, J. R. Adv. Funct. Mater. 2003, 13, 205. https://doi.org/10.1002/adfm.200390031
  9. O'Reagen, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  10. Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607
  11. Wang, P.; Klein, C.; Baker, R. H.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 808. https://doi.org/10.1021/ja0436190
  12. Jang, S. R.; Lee, C. C.; Choi, H.; Ko, J. J.; Lee, J.; Vittal, R.; Kim, K. J. Chem. Mater. 2006, 18, 5604. https://doi.org/10.1021/cm061447v
  13. Robertson, N. Angew. Chem. Int. Ed. 2006, 45, 1611. https://doi.org/10.1002/anie.200503649
  14. Nazeeruddin, M. K.; Angelis, F. De; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Bessho, T.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. https://doi.org/10.1021/ja052467l
  15. Gratzel, M. J. Photochem. Photobiol. 2003, C4, 145.
  16. Gratzel, M. Prog. Photovolt Res. Appl. 2006, 14, 429. https://doi.org/10.1002/pip.712
  17. Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, S. M.; Nazeeruddin, M. K.; Grätzel, M. Angew. Chem. Int. Ed. 2008, 47, 327. https://doi.org/10.1002/anie.200703852
  18. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. 2003, 125, 475. https://doi.org/10.1021/ja027945w
  19. Chen, S. G.; Chappel, S.; Diamant, Y.; Zaban, A. Chem. Mater. 2001, 13, 4629. https://doi.org/10.1021/cm010343b
  20. Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry- Baker, R.; Grätzel, M. J. Phys. Chem. B 2003, 107, 14336. https://doi.org/10.1021/jp0365965
  21. Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Grätzel, M. Adv. Mater. 2003, 15, 2101. https://doi.org/10.1002/adma.200306084
  22. Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Gratzel, M. Chem. Mater. 2004, 16, 2694. https://doi.org/10.1021/cm049916l
  23. Kopidakis, N.; Neale, N. R.; Frank, A. J. J. Phys. Chem. B 2006, 110, 12485. https://doi.org/10.1021/jp0607364
  24. Pelet, J. S.; Moser, E.; Gratzel, M. J. Phys. Chem. B 2000, 104, 1791. https://doi.org/10.1021/jp9934477
  25. Hara, K.; Dan-oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. Langmuir 2004, 20, 4205. https://doi.org/10.1021/la0357615
  26. Nazeeruddin, M. K.; Pe'chy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, E.; Le. Costa, Shklover, V.; Spiccia, L; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613. https://doi.org/10.1021/ja003299u
  27. Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han,L. J. App. Phys. 2006, 45, L638. https://doi.org/10.1143/JJAP.45.L638
  28. Baek, N. S.; Yum, J.-H.; Kim, H. K.; Nazeeruddin, M. K.; Grätzel, M. Energy Environ. Sci. 2009, 2, 1082. https://doi.org/10.1039/b908670f
  29. Seo, K. D.; Song, H. M.; Lee, M. J.; Pastore, M.; Anselmi, C.; Angelis, F. D.; Nazeeruddin, M. K.; Grätzel, M.; Kim, H. K. Dyes and Pigments 2011, 90, 304. https://doi.org/10.1016/j.dyepig.2011.01.009
  30. Lee, K.-M.; Suryanarayanan, V.; Ho, K.-C.; Justin Thomas, K. R.; Lin, J. T. Sol. Energy. Mater. Sol. Cells 2007, 91, 1426. https://doi.org/10.1016/j.solmat.2007.03.009
  31. Snaith, H. J. Adv. Funct. Mater. 2010, 20, 13. https://doi.org/10.1002/adfm.200901476
  32. Kane-sato, M.; Sugaya, K.; Segawa, Tsukada, M. N. PCT/JP2006/ 319848.
  33. Kane-sato, M.; Sugaya, K.; Segawa, M. PCT/JP2006/320762.
  34. Kim, Y. H.; Baek, N. S.; Kim, H. K. ChemPhysChem. 2006, 7, 213. https://doi.org/10.1002/cphc.200500291
  35. Baek, N. S.; Kim, Y. H.; Roh, S.-G.; Lee, D. H.; Seo, K. D.; Kim, H. K. Bull. Kor. Chem. Soc. 2009, 7, 1553.
  36. Baek, N. S.; Kim, Y. H.; Roh, S. G.; Kwak, B. K.; Kim, H. K. Adv. Funct. Mater. 2006, 16, 1873. https://doi.org/10.1002/adfm.200500835
  37. Bunzli, J.-C. G.; Chauvin, A-S.; Deiters, E.; Eliseeva, S. V.; Kim, H. K. Coord. Chem. Rev. 2010, 254, 2623. https://doi.org/10.1016/j.ccr.2010.04.002
  38. Oh, J. B.; Nah, M. K.; Kim, Y. H.; Kang, M. S.; Ka, J. W.; Kim, H. K. Adv. Funct. Mater. 2007, 17, 413. https://doi.org/10.1002/adfm.200600451
  39. Ren, X.; Feng, Q.; Zhou, G.; Huang, C.-H.; Wang, Z.-S. J. Phys. Chem. C 2010, 114, 7190. https://doi.org/10.1021/jp911630z
  40. Bernard, M. C.; Cachet, H.; Falaras, P.; Hugot-Le Goff, A.; Kalbac, M.; Lukes, I.; Oanh, N. T.; Stergiopoulos, T.; Arabatzis, I. J. Electrochem. Soc. 2003, 150, E1159.
  41. Prodi, A.; Chiorboli, C.; Scandola, F.; Iengo, E.; Alessio, E.; Dobrawa, R.; Würthner, F. J. Am. Chem. Soc. 2005, 127, 1454. https://doi.org/10.1021/ja045379u
  42. Kamart, P. V. Chem. Rev. 1993, 93, 267. https://doi.org/10.1021/cr00017a013
  43. Baek, N. S.; Kim, Y. H.; Eom, Y. K.; Oh, J. H.; Kim, H. K.; Aevisscher, A.; Ferederic, G.; Chauvin, A.-S.; Bunzli, J.-C. G. Dalton Trans. 2010, 39, 1532. https://doi.org/10.1039/b915893f
  44. Nah, M. K.; Oh, J. B.; Kim, H. K.; Choi, K.-H.; Kim, Y.-R.; Kang, J.-G. J. Phys. Chem. A 2007, 111, 6157. https://doi.org/10.1021/jp0688512
  45. Van staveren, D. R.; Bothe, E.; Weyhermüller, T.; Metzler-Nolte, N. Eur. J. Inorg. Chem. 2002, 6, 1518.
  46. Hardin, B. E.; Hoke, E. T.; Armstrong, P. B.; Yum, J. H.; Comte, P.; Torres, T.; Frechet, J. M. J.; Nazeeruddin, M. K.; Grätzel, M.; McGehee, M. D. Nature photonics 2009, 3, 406. https://doi.org/10.1038/nphoton.2009.96
  47. Stathatos, E. Int. J. Mod. Phys. B 2006, 20, 249. https://doi.org/10.1142/S0217979206033206
  48. Frindell, K. L.; Bartl, M. H.; Popitsch, A.; Stucky, G. D. Angew. Chem. Int. Ed. 2002, 41, 960.
  49. Li, H.; Inoue, S.; Machida, K.; Adachi, G. Chem. Mater. 1999, 11, 3171. https://doi.org/10.1021/cm990251a
  50. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597. https://doi.org/10.1021/jp026963x
  51. Koops, S. E.; Barnes, P. R. F.; O'Regan, B.; Durrant, J. R. J. Phys. Chem. C 2010, 114, 8054. https://doi.org/10.1021/jp910972x
  52. Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Electrochem. Acta. 2002, 47, 4213. https://doi.org/10.1016/S0013-4686(02)00444-9
  53. Bisquert, J. J. Phys. Chem. B 2002, 106, 325. https://doi.org/10.1021/jp011941g
  54. Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360. https://doi.org/10.1039/b310907k
  55. Wang, N.; Lin, H.; Li, J.; Li, X. Appl. Phys. Lett. 2006, 89, 194104. https://doi.org/10.1063/1.2387967
  56. Jiangbin, X.; Masaki, N.; Lira-Cantu, M.; Kim, Y.; Jiang, K.; Yanagida, S. J. Am. Chem. Soc. 2008, 130, 1258. https://doi.org/10.1021/ja075704o

Cited by

  1. )-cored complexes based on boron dipyrromethene (Bodipy) ligands for NIR emission vol.36, pp.3, 2012, https://doi.org/10.1039/C2NJ20786A
  2. -1-Naphthoate Complex with N-Donor Ligand as a New White Luminescent Single Molecular Material vol.2, pp.1, 2013, https://doi.org/10.5857/RCP.2013.2.1.034
  3. Intriguing aspects of lanthanide luminescence vol.4, pp.5, 2013, https://doi.org/10.1039/c3sc22126a
  4. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters vol.42, pp.1, 2013, https://doi.org/10.1039/C2CS35288E
  5. The influence of yttrium dopant on the properties of anatase nanoparticles and the performance of dye-sensitized solar cells vol.17, pp.22, 2015, https://doi.org/10.1039/C5CP01178G
  6. ) complex on its luminescence properties: combined experimental and theoretical study vol.41, pp.3, 2017, https://doi.org/10.1039/C6NJ03014A
  7. Research Progress of Europium Complexes Luminescent Materials vol.1001, pp.None, 2020, https://doi.org/10.4028/www.scientific.net/msf.1001.1