DOI QR코드

DOI QR Code

Ring-Opening Metathesis Polymerization and Hydrogenation of Ethyl-substituted Tetracyclododecene

  • Kwon, Oh-Joon (Energy Division, Korea Institute of Science and Technology) ;
  • Vo, Huyen Thanh (Energy Division, Korea Institute of Science and Technology) ;
  • Lee, Sul-Bee (Energy Division, Korea Institute of Science and Technology) ;
  • Kim, Tae-Kyung (Energy Division, Korea Institute of Science and Technology) ;
  • Kim, Hoon-Sik (Department of Chemistry, Kyung Hee University) ;
  • Lee, Hyun-Joo (Energy Division, Korea Institute of Science and Technology)
  • Received : 2011.06.14
  • Accepted : 2011.06.06
  • Published : 2011.08.20

Abstract

Ring-opening metathesis polymerization (ROMP) of an ethyl-substituted tetracyclododecene (8-ethyltetracyclo[$4.4.0.1^{2,5}.1^{7,10}$] dodec-3-ene, Et-TCD) was carried out in the presence of a ternary catalyst system consisting of $WCl_6$, triisobutyl aluminium (iso$Bu_3Al$), and ethanol. The optimal molar ratio of Et-TCD/$WCl_3$/iso-$Bu_3Al$/ethanol was found as 500/1/3/2 at which the yield of ring-opened polymer was 100%. 1-Hexene was shown to be an effective molecular weight controlling agent for ROMP reaction of Et-TCD. The hydrogenation of the ring opened polymer (p-Et-TCD) was conducted successfully using Pd(5 wt %)/${\gamma}$-$Al_2O_3$ at $80^{\circ}C$ for 1 h. Chemical structures of p-Et-TCD and its hydrogenated product($H_2$-p-Et-TCD) were characterized using 2D NMR techniques ($^1H-^1H$ COSY and $^1H-^{13}C$ HSQC). The changes of physical properties such as thermal stability, glass transition temperature and light transmittance after the hydrogenation were also investigated using TGA, DSC, and UV.

Keywords

References

  1. Yamazaki, M. J. Mol. Catal. A-Chem. 2001, 213, 81.
  2. Shin, J. Y.; Park, J. Y.; Liu, C.; He, J.; Kim, S. C. Pure Appl. Chem. 2005, 77, 801. https://doi.org/10.1351/pac200577050801
  3. Hayano, S.; Kurakata, H.; Uchida, D.; Sakamoto, M.; Kishi, N.; Matsumoto, H.; Tsungoae, Y.; Igarashi, I. Chemistry Letters 2003, 32, 670. https://doi.org/10.1246/cl.2003.670
  4. Otsuki, T.; Goto, K.; Komiya, Z. J. Polym. Sci., Polym. Chem. 2000, 38, 4661. https://doi.org/10.1002/1099-0518(200012)38:1+<4661::AID-POLA50>3.0.CO;2-K
  5. Tadahiro, S.; Masutada, O.; Tadashi, A. Japanese Patent 193323, 1999.
  6. Hashizume, M.; Uchida, T.; Aida, F.; Suzuki, T.; Inomata, Y.; Matsumura, Y. US Patent 6512152, 2003.
  7. Bielawski, C.; Grubbs, R. Prog. Polym. Sci. 2007, 32, 1. https://doi.org/10.1016/j.progpolymsci.2006.08.006
  8. Hayano, S.; Sugawara, T; Tsunogae, Y. Appl. Polym. Sci. 2006, 44, 3153. https://doi.org/10.1002/pola.21421
  9. Dragutan, V.; Dragutan, I.; Fischer, H. J. Inorg. Organomet. Polym. 2008, 18, 18. https://doi.org/10.1007/s10904-007-9185-5
  10. Camm, K. D.; Castro, N. M.; Liu, Y.; Czechura, P.; Snelgrove, J. L.; Fogg, D. E. J. Am. Chem. Soc. 2007, 129, 4168. https://doi.org/10.1021/ja071047o
  11. Ogata, Y.; Makita, Y.; Okaniwa, M. Polymer 2008, 49, 4819. https://doi.org/10.1016/j.polymer.2008.08.047
  12. Hayano, S.; Takeyama, Y.; Tsunogae, Y.; Igarashi, I. Macromolecules 2006, 39, 4663. https://doi.org/10.1021/ma0604340
  13. Gehlsen, M. D.; Bates, F. S. Macromolecules 1993, 26, 4122. https://doi.org/10.1021/ma00068a009
  14. Hosaka, T.; Mizuno, H.; Koushima, Y.; Kohara, T.; Nasuume, T. US Patent 5462995, 1995.
  15. Yoshinori, M. Japanese Patent 252964, 2003.
  16. Sohn, B. H.; Gratt, J. A.; Lee, J. K.; Cohen, R. E. J. Appl. Polym. Sci. 1995, 58, 1041. https://doi.org/10.1002/app.1995.070580610
  17. Lee, L. B. W.; Register, R. A. Macromolecules 2005, 38, 1216. https://doi.org/10.1021/ma048013a
  18. Hatjopoulos, J. D.; Register, R. A. Macromoleculs 2005, 38, 10320. https://doi.org/10.1021/ma0515331
  19. Al-Samak, B.; Amir-Ebrahimi, V.; Carvill, A. G.; Hamilton, J. G.; Rooney, J. J. Polym. Int. 1996, 41, 85. https://doi.org/10.1002/(SICI)1097-0126(199609)41:1<85::AID-PI582>3.0.CO;2-Y
  20. Carvill, A. G.; Greene, R. M. E.; Hamilton, J.; Ivin, K. J.; Kenwrigth, A. M.; Rooney, J. J. Macromol. Chem. Phys. 1998, 199, 687.
  21. Kim, J.; Wu, C. J.; Kim, W.-J.; Kim, J.; Lee, H.; Kim, J.-D. J. Appl. Polym. Sci. 2010, 116, 479. https://doi.org/10.1002/app.31557
  22. Choo, H. P.; Liew, K. Y.; Liu, H.; Seng, C. E.; Mahmood, W. A. K.; Bettahar, M. J. Mol. Catal. A-Chem. 2003, 191, 113. https://doi.org/10.1016/S1381-1169(02)00351-5
  23. Wang, D.-S.; Wang, D.-W.; Zhou, Y.-G. Synlett. 2011, 7, 47.

Cited by

  1. Post-functionalization of a ROMP polymer backbone via radical thiol-ene coupling chemistry vol.51, pp.3, 2012, https://doi.org/10.1002/pola.26433
  2. Ring-opening metathesis polymerization of dicyclopentadiene and tricyclopentadiene vol.21, pp.1, 2013, https://doi.org/10.1007/s13233-012-0190-3
  3. Copolymers of dicyclopentadiene and tricyclopentadiene vol.55, pp.5-6, 2013, https://doi.org/10.1134/S1560090413060092
  4. Bulk Synthesis and Modeling of Living ROMP of 1,5-Cyclooctadiene for Narrowly Distributed Low Molecular Weight Linear Polyethylenes vol.7, pp.12, 2013, https://doi.org/10.1002/mren.201300121
  5. Synthesis of High Performance Cyclic Olefin Polymers (COPs) with Ester Group via Ring-Opening Metathesis Polymerization vol.7, pp.8, 2015, https://doi.org/10.3390/polym7081389
  6. Synthesis of high performance cyclic olefin polymers using highly efficient WCl6-based catalyst system pp.1439-6203, 2017, https://doi.org/10.1007/s10118-018-2055-5
  7. Synthesis of Novel Cyclic Olefin Polymer with High Glass Transition Temperature via Ring-Opening Metathesis Polymerization vol.217, pp.24, 2016, https://doi.org/10.1002/macp.201600405
  8. Facile synthesis of norbornene-ethylene-vinyl acetate/vinyl alcohol multiblock copolymers by the olefin cross-metathesis of polynorbornene with poly(5-acetoxy-1-octenylene) vol.11, pp.44, 2011, https://doi.org/10.1039/d0py01167c