DOI QR코드

DOI QR Code

Potentiometric Sensor for the Determination of Dibucaine in Pharmaceutical Preparations and Electrochemical Study of the Drug with BSA

  • Ensafi, Ali A. (Department of Chemistry, Isfahan University of Technology) ;
  • Allafchian, A.R. (Department of Chemistry, Isfahan University of Technology)
  • Received : 2011.01.26
  • Accepted : 2011.07.04
  • Published : 2011.08.20

Abstract

Plasticized poly(vinyl chloride), PVCs, with different membrane compositions tested for use in the construction of an ion-selective sensor for the determination dibucaine. A prepared membrane with dioctyl phthalate-PVC and ion-pair of N-(1-naphthyl)ethylenediamine dihydrochloride-tetraphenyl borate had a good potential to acts as a potentiometric sensor for the analysis of dibucaine. A linear relationship was obtained between potential and logC varying between $1.0{\times}10^{-6}$ and $1.0{\times}10^{-2}$ M dibucaine with a good repeatability and reproducibility. The sensor was applied for the determination of the drug in pharmaceuticals and biological fluids such as plasma and urine samples with satisfactory results. The drug electrode has also been used to study the interaction of bovine serum albumin (BSA) with dibucaine. The saturated quantities of dibucaine binding were 13.04, 5.30 and 9.70 mol/mol in 0.01, 0.02 and 0.1% of protein, respectively.

Keywords

References

  1. Miescher, K. Helv. Chim. Acta 1932, 15, 163. https://doi.org/10.1002/hlca.19320150116
  2. El-Gindy, A.; Korany, M. A.; Bedair, M. F. J. Pharm. Biomed. Anal. 1998, 17, 1357. https://doi.org/10.1016/S0731-7085(98)00041-7
  3. Abdel-Ghani, N. T.; Youssef, A. F.; Awady, M. A. Farmaco 2005, 60, 419. https://doi.org/10.1016/j.farmac.2005.03.001
  4. Essig, S.; Kovar, K. A. Chromatographia 2001, 53, 321. https://doi.org/10.1007/BF02490432
  5. Fernandez-Marcote, M. S. M.; Callejon-Mochon, M.; Jimenez- Sanchez, J. C.; Guiraum-Perez, A. Analyst. 1996, 121, 681. https://doi.org/10.1039/an9962100681
  6. Elsayed, M. M. A. Biomed. Chromatogr. 2007, 21, 491. https://doi.org/10.1002/bmc.782
  7. Culea, M.; Palibroda, N.; Moldovan, Z.; Abraham, A. D.; Frangopol, P. T. Chromatogr. 1989, 28, 24. https://doi.org/10.1007/BF02290377
  8. Turan, J.; Matejek, S.; Potuzak, M. Farm. Obz. 1989, 58, 551.
  9. Cherkaoui, S.; Veuthey, J. L. Analusis 1999, 27, 765. https://doi.org/10.1051/analusis:1999142
  10. Shirahama, K.; Kamaya, H.; Ueda, I. Anal. Lett. 1983, 16, 1485. https://doi.org/10.1080/00032718308069541
  11. Buhlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev. 1998, 98, 1593. https://doi.org/10.1021/cr970113+
  12. Vytras, K. Ion-Sel. Electrode Rev. 1985, 7, 77. https://doi.org/10.1016/B978-0-08-034150-7.50007-3
  13. Ensafi, A. A.; Allafchian, A. R. J. Pharm. Biomed. Anal. 2008, 47, 802. https://doi.org/10.1016/j.jpba.2008.03.024
  14. Allafchian, A. R.; Ensafi, A. A. J. of the Brazilian Chemical Society 2009, 21, 564.
  15. Allafchian, A. R.; Ensafi, A. A.; Saraji, M. Anal. Lett. 2009, 42, 571. https://doi.org/10.1080/00032710802677118
  16. Ensafi, A. A.; doozandeh, F.; Allafchian, A. R. J. of the Brazilian Chemical Society 2010, 21, 2246. https://doi.org/10.1590/S0103-50532010001200011
  17. Ensafi, A. A.; Allafchian, A. R.; Saraji, M. Mirahmadi_Zare, S. Z. Anal. Methods 2011, 3, 463. https://doi.org/10.1039/c0ay00642d
  18. Ensafi, A. A.; Allafchian, A. R.; Faridfar, R. Sensors Letters 2011, 3, 479.
  19. Ammann, D.; Pretsch, E.; Simon, W.; Lindler, E.; Bezegh A.; Pungor, E. Anal. Chim. Acta 1985, 171, 119. https://doi.org/10.1016/S0003-2670(00)84189-6
  20. Oesch, U.; Simon, W. Anal. Chem. 1980, 52, 692. https://doi.org/10.1021/ac50054a024
  21. Kaneshina, S.; Satake, H.; Yamamoto, T.; Kume, Y.; Matsukia, H. Colloids and Surfaces B: Biointerfaces 1997, 10, 51. https://doi.org/10.1016/S0927-7765(97)00043-X
  22. Brown, J. R.; Shockley, P.; Jost, P. C.; Griffith, O. H. Serum Albumin Structure And Characterization Of Its Ligand Binding Sites in Lipid-Protein Interactions; John Wiley: New York, 1982; p 25.
  23. Fukuhima K.; Someya, M.; Shimozawa, R. Bull. Chem. Soc. Jpn. 1993, 66, 1613. https://doi.org/10.1246/bcsj.66.1613
  24. Shamsipur, M.; Alizadeh, N.; Gharibi, H.; Mousavi, M. F. J. Chin. Chem. Soc. 1997, 44, 9.
  25. http://en.wikipedia.org/wiki/Hill_ equation, Nov. 8, 2010.

Cited by

  1. Green Ion Selective Electrode Potentiometric Application for the Determination of Cinchocaine Hydrochloride in Presence of Its Degradation Products and Betamethasone Valerate: A Comparative Study of Liquid and Solid Inner Contact Ion-Selective Electrode Membranes vol.164, pp.9, 2017, https://doi.org/10.1149/2.0921709jes
  2. Experimental Design Approach in the Optimization of Potentiometric Method for Lansoprazole Determination Using Lansoprazole-Tungstate Based Ion-Selective Electrode vol.57, pp.29, 2011, https://doi.org/10.1021/acs.iecr.8b01281
  3. Optimum HPLC Conditions for Determination of Dibucaine HCL, Fluocortolone Pivalate and Fluocortolone Caproate by Using Experimental Design vol.15, pp.1, 2011, https://doi.org/10.2174/1573412913666170707113025
  4. Electrochemical Detection of a Local Anesthetic Dibucaine at Arrays of Liquid|Liquid MicroInterfaces vol.9, pp.1, 2011, https://doi.org/10.3390/chemosensors9010015