한국생물정보시스템생물학회 2000년도 International Symposium on Bioinformatics
/
pp.23-27
/
2000
Protein interaction is an important research topic in Bioinformatics. A novel computational method of protein interaction was developed. It shows the diverse pattern of protein protein interaction,
The latest measure of the relative evolutionary age of protein structure families was applied (based on taxonomic diversity) using the protein structural interactome map (PSIMAP). It confirms that, in general, protein domains, which are hubs in this interaction network, are older than protein domains with fewer interaction partners. We apply a hypothesis of 'biological network evolution' to explain the positive correlation between interaction and age. It agrees to the previous suggestions that proteins have acquired an increasing number of interaction partners over time via the stepwise addition of new interactions. This hypothesis is shown to be consistent with the scale-free interaction network topologies proposed by other groups. Closely co-evolved structural interaction and the dynamics of network evolution are used to explain the highly conserved core of protein interaction pathways, which exist across all divisions of life.
Motivation: Protein-protein interaction plays a critical role in the biological processes. The identification of interacting proteins by bioinformatical methods can provide new lead In the functional studies of uncharacterized proteins without performing extensive experiments. Results: Protein-protein interactions are predicted by a computational algorithm based on the weighted scoring system for domain interactions between interacting protein pairs. Here we propose potential interaction domain (PID) pairs can be extracted from a data set of experimentally identified interacting protein pairs. where one protein contains a domain and its interacting protein contains the other. Every combinations of PID are summarized in a matrix table termed the PID matrix, and this matrix has proposed to be used for prediction of interactions. The database of interacting proteins (DIP) has used as a source of interacting protein pairs and InterPro, an integrated database of protein families, domains and functional sites, has used for defining domains in interacting pairs. A statistical scoring system. named "PID matrix score" has designed and applied as a measure of interaction probability between domains. Cross-validation has been performed with subsets of DIP data to evaluate the prediction accuracy of PID matrix. The prediction system gives about 50% of sensitivity and 98% of specificity, Based on the PID matrix, we develop a system providing several interaction information-finding services in the Internet. The system, named PreDIN (Prediction-oriented Database of Interaction Network) provides interacting domain finding services and interacting protein finding services. It is demonstrated that mapping of the genome-wide interaction network can be achieved by using the PreDIN system. This system can be also used as a new tool for functional prediction of unknown proteins.
This paper compares domain combination based protein-protein interaction prediction method with domain based protein-protein interaction method. The prediction accuracy and reliability of the methods are compared using the same prediction technique and interaction data. According to the comparison, domain combination based prediction method has showed superior prediction accuracy to domain based prediction method for protein pairs with fully overlapped domains with protein pairs in learning sets. When we consider that domain combination based method has the effects of assigning a weight to each domain interaction, it implies that we can improve the prediction accuracies of currently available domain or domain combination based protein interaction prediction methods further by developing more advanced weight assignment techniques. Several significant facts revealed from the comparative studies are also described in this paper.
다양한 유전체 프로젝트로 말미암아 엄청난 서열 데이타들이 쏟아지고, 이에 따라 핵산 및 단백질 수준의 서열 데이타 분석이 매우 중요하게 인식되고 있다. 특히 최근에는 단백질이 단순하게 개별적인 기능을 가진 독립적인 요소가 아닌 전체 단백질 상호작용 네트워크 상에서 다른 객체들과 유기적인 관계를 갖으며 나름대로의 중요한 역할을 수행하고 있다는 점에 초점을 맞추어 연구가 진행되고 있다. 특히 단백질 상호작용 관계 분석을 위해서는 실제로 상호작용이 일어나는 도메인 모듈 정보가 아주 중요하게 작용하는데, 본 논문에서는 이러한 점을 고려하여 우리가 개발한 단백질 기능 및 상호작용 분석을 위한 PIVS(Protein-protein interaction Inference and Visualization System)에 대해 소개하고 있다 PIVS는 기존의 단백질 상호작용 데이타베이스들을 합쳐서 통합 데이타베이스를 생성하고, 다양한 전처리 과정으로 통합 데이타베이스 서열의 기능 및 주석 정보를 추출하여 로컬 데이타베이스화 하였다. 그리고 특히 단백질 상호작용 관계 분석을 위해 중요하게 작용하는 도메인 모듈 정보들을 추출하여 로컬 데이터베이스를 구축하였고, 기존의 단백질 상호작용 관계 데이타를 이용하석 도메인 사이의 상호작용 관계 정보도 수집하여 분석하였다. PIVS는 단백질의 종합적인 분석 정보, 즉, 기능 및 주석, 도메인, 상호작용 관계 정보 등을 손쉽고 편리하게 얻고자 하는 사용자에게 매우 유용하게 사용될 수 있을 것이다.
이 논문은 단백질의 기능분석을 위해 핵심적으로 요구되는 단백질 상호작용 관계정보 및 기능정보 등을 체계적으로 제공할 수 있는 WASPIFA (Web-based Assistant System for Protein-protein Interaction and function Analysis) 시스템에 대해서 다루고 있다. WASPIFA 시스템은 특정 분야에 국한해서 단편적 정보를 제공하는 기존의 단백질 기능 및 상호작용 분석 시스템과는 달리 분석하고자 하는 서열의 종합적인 정보 즉, 기능정보 및 주석정보, 도메인 정보, 상호작용 관계정보 등을 제공한다. 일반 검색 및 분석 시스템에서 제공하지 못하는 종합적인 정보들은 다양한 전처리 과정을 통해서 얻어진 데이터 및 정보 등을 시스템 내에 로컬 데이터베이스화해 놓은 것이다. 최종 사용자는 종합적인 정보를 통해서 올바른 평가와 판단을 통해서 효과적인 단백질 상호작용 분석과 기능분석을 행할 수 있다. 또한 자동관리 및 데이터 갱신 기능을 갖추고 있어 시스템 관리자가 효율적으로 시스템을 유지 및 관리할 수 있다.
유전체 분석에서 중요한 부분 중 하나는 기능이 알려지지 않은 미지 단백질에 대한 기능 예측이다. 단백질-단백질 상호작용 네트워크를 분석하는 것은 미지 단백질에 대한 기능을 보다 쉽게 예측할 수 있게 한다. 단백질-단백질 상호작용 네트워크로부터 미지 단백질의 기능을 예측하기 위한 다양한 연구들이 시도되어 왔다. 카이-제곱(Chi-square) 방식은 단백질-단백질 상호작용 네트워크를 통해 기능을 예측하고자 하는 연구 중 대표적인 방식이다. 하지만 카이-제곱 방식은 네트워크의 토폴로지를 반영하지 않아 네트워크 크기에 따라 예측의 정확성이 떨어지는 문제점이 있다. 따라서 본 논문에서는 카이-제곱 방식을 보완하여 정확성을 높인 새로운 기능 예측 방법을 제안한다 이를 위해 MIPS, DIP 그리고 SGD와 같은 공개된 단백질 상호작용 데이터베이스들로부터 데이터를 수집하여 분석하였다. 그리고 제안된 방식의 우수성을 입증하기 위해 각 데이터베이스들에 대해 카이-제곱방식과 제안하는 보완된 카이-제곱(Modified Chi-square)방식으로 예측해보고 이들의 정확성을 평가하였다.
Estimating the reliability of protein-protein interaction data sets obtained by high-throughput technologies such as yeast two-hybrid assays and mass spectrometry is of great importance. We develop a maximum likelihood estimation method that uses both protein localization and gene expression data to estimate the reliability of protein interaction data sets. By integrating protein localization data and gene expression data, we can obtain more accurate estimates of the reliability of various interaction data sets. We apply the method to protein physical interaction data sets and protein complex data sets. The reliability of the yeast two-hybrid interactions by Ito et al. (2001) is 27%, and that by Uetz et at.(2000) is 68%. The reliability of the protein complex data sets using tandem affinity purification-mass spec-trometry (TAP) by Gavin et at. (2002) is 45%, and that using high-throughput mass spectrometric protein complex identification (HMS-PCI) by Ho et al. (2002) is 20%. The method is general and can be applied to analyze any protein interaction data sets.
Living cells are sustained not by individual activities but rather by coordinated summative efforts of different biological functional modules. While recent research works have focused largely on finding individual functional modules, this paper attempts to explore the connections or relationships between different cellular functions through cross-function domain interaction maps. Exploring such a domain interaction map can help understand the underlying inter-function communication mechanisms. To construct a cross-function domain interaction map from existing genome-wide protein-protein interaction datasets, we propose a two-step procedure. First, we infer conserved domain-domain interactions from genome-wide protein-protein interactions of yeast, worm and fly. We then build a cross-function domain interaction map that shows the connections of different functions through various conserved domain interactions. The domain interaction maps reveal that conserved domain-domain interactions can be found in most detected cross-functional relationships and a f9w domains play pivotal roles in these relationships. Another important discovery in the paper is that conserved domains correspond to highly connected protein hubs that connect different functional modules together.
단백질 상호작용 데이터는 현 생물정보학에서 기능이 알려져 있지 않은 단백질의 기능 예측에 높은 신뢰성이 있는 프로티오믹스의 계산 모델에 이용되고 있다. 단백질 기능 예측 관련 연구로는 guilt-by-association 개념을 바탕으로 대규모의 단순 2차원 단백질-단백질 상호작용 맵을 이용하고 있다. 본 논문에서는 단백질-단백질 상호작용 데이터를 이용한 그래프 기반 기능 예측 방법인 neighbor-counting, $\chi^2$-통계치 예측 모델을 살펴보고 대량의 상호작용 데이터로부터 빠른 기능예측에 효과적인 알고리즘을 제안한다. 제안하는 알고리즘은 단백질 상호작용 맵, 서열 유사성 및 경험적 전문가 지식을 이용하는 그래프 기반 모델이다. 제안된 알고리즘은 Yeast 단백질의 기능 예측을 수행하였으며, neighbor-counting, $\chi^2$-통계치 모델의 실험 결과와 비교되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.