DOI QR코드

DOI QR Code

Optical Properties and Structure of Black Cobalt Solar Selective Coatings

흑색 코발트 태양 선택흡수막의 광학적특성과 구조

  • Received : 2011.05.25
  • Accepted : 2011.08.08
  • Published : 2011.08.30

Abstract

Black cobalt solar selective coatings were prepared by thermal oxidation of electroplated cobalt metal on copper and nickel substrates. The optical properties and structure of the black cobalt selective coating for solar energy utilizations were characterized by glow discharge spectrometry (GDS), ultraviolet-visible-near infrared (UV-VIS-NIR) spectrometer, atom force microscopy(AFM) and X-ray photoelectron spectroscopy(XPS). The optical properties of optimum black cobalt selective coating prepared on copper substrate were a solar absorptance of 0.82 and a thermal emittance of 0.01. From the GDS depth profile analysis of these coatings, the concentration of cobalt particles near the interface was higher than at the surface, but oxygen concentration at the surface was higher than at the interface. These results suggest that the selective absorption was dominated by this chemical composition variation in the coating. The surface of this film exhibited morphology with root-mean-square(rms) roughness of about 144.3nm. XPS measurements data showed that several phases of Co coexist($Co_3O_4$,CoO) in the film.

Keywords

References

  1. O. P. Agnihotri and B. K. Gupta, Solar Selective Surfaces, 1st ed. (Wiley-Interscience Publication, New York, 1981), Chapter. 5.
  2. H. Tabor, Bull. Res. Council Israel 5A, 119(1956).
  3. G. B. Smith, A. Ignatiev and G. Zajac, J. Appl. Phys. 51, 4186(1980) https://doi.org/10.1063/1.328276
  4. K. D. Lee, W. C. Jung and J. H. Kim, Sol. Energy Mater. & Sol. Cells 63, 125 (2000). https://doi.org/10.1016/S0927-0248(99)00164-6
  5. Q. C. Zhang, M. S. Hadavi, K. D. Lee, and Y. G. shen, J. Phys. D: Appl. Phys. 36, 723 (2003). https://doi.org/10.1088/0022-3727/36/6/315
  6. V. Teixeira, E. Souse, M. F. Costa, C. Nunes, L. Rosa, M. J. Carvalho, M. Collares-Pereira, E. Roman and J. Gago, Vacuum 64, 299 (2002). https://doi.org/10.1016/S0042-207X(01)00372-4
  7. K. D. Lee, Korean Phy. Soc. 51, 135 (2007) https://doi.org/10.3938/jkps.51.135
  8. P. Oelhafen and A. Schuler, Sol. Energy 79, 110 (2005). https://doi.org/10.1016/j.solener.2004.11.004
  9. M. R. Durry, T. Theocharous, N. Harrison, N. F. Moira Hilton, Optics Communications 270, 262 (2007). https://doi.org/10.1016/j.optcom.2006.08.038
  10. M. R. Bayati, M. H. Shariat and K. Janghorban, Renewable Energy 30, 2163 (2005). https://doi.org/10.1016/j.renene.2005.02.003
  11. K. D. Lee, Korean Phy. Soc. 49, 187 (2006).
  12. G. B. Smith and A. Ignatiev, Sol.Energy Mater. 2, 461 (1980) https://doi.org/10.1016/0165-1633(80)90040-4
  13. A. Avila, E. Barrera, L. Huerta and S. Muhl, Sol. Energy Mater. & Sol. Cells 82, 269 (2004) https://doi.org/10.1016/j.solmat.2004.01.024
  14. G. B. Smith, G. Zajac, A. Ignatiev and J. W. Rabalais, Sur. Sci. 114, 614 (1981).
  15. T. K. Bostrom, E. Wackelgard, and G. Westin, Sol. Energy Mater. & Sol. Cells 89, 197 (2005). https://doi.org/10.1016/j.solmat.2005.01.014
  16. A. R. Shashikala, A. K. Sharma, D. R. Bhandari, Sol. Energy Mater. & Sol. Cells 91, 629 (2007). https://doi.org/10.1016/j.solmat.2006.12.001
  17. D. Bacon and A. Ignatiev, Sol. Energy Mater. 9, 3 (1983) https://doi.org/10.1016/0165-1633(83)90027-8
  18. T. Bostrm, J. Jensen, S. Valizadeh, G. Westin and E. Wackelgard, Sol. Energy Mater. & Sol. Cells 92, 1177 (2008). https://doi.org/10.1016/j.solmat.2008.02.014
  19. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, 2nd ed. (Wiley-Interscience, New York, 1991)
  20. G. Zajac, G. B. Smith and A. Ignatiev, J. Appl. Phys. 51, 5544 (1980). https://doi.org/10.1063/1.327475
  21. A. Portinha, V. Teixeira, A. Monteiro, M. F. Costa, N. Lima, J. Martins and D. Martinez, Surf. Interface Anal. 35, 72 (2003) https://doi.org/10.1002/sia.1496
  22. C. M. Lampert and J. Washburn, Sol. Energy Mater. 1, 81 (1979). https://doi.org/10.1016/0165-1633(79)90059-5