DOI QR코드

DOI QR Code

An Experimental Study on Crack Growth in Rock-like Material under Monotinic and Cyclic Loading

단조증가 및 반복하중 하에서 모사 암석 시료의 균열 성장에 관한 실험적 연구

  • Received : 2011.08.09
  • Accepted : 2011.08.23
  • Published : 2011.08.31

Abstract

Cyclic loading due to traffic, excavation and blasting causes microcrack growth in rocks over long period of time, and this type of loading often causes rock to fail at a lower stress than its monotonically determined strength. Thus, the crack growth and coalescence under cyclic loading are important for the long-term stability problems. In this research, experiments using gypsum as a model material for rock are carried out to investigate crack propagation and coalescence under monotonic and cyclic loading. Both monotonic and cyclic tests have a similar wing crack initiation position, wing crack initiation angle, cracking sequence and coalescence type. Three types of crack coalescence were observed; Type I, II and III. Type I coalescence occurs due to a shear crack and Type II coalescence occurs through one wing or tension crack. For Type III, coalescence occurs through two wing or tension cracks. Fatigue cracks appear in cyclic tests. Two types of fatigue crack initiation directions, coplanar and horizontal directions, are observed.

교통, 굴착, 발파 등에 의한 반복하중은 오랜 시간에 걸쳐서 암석의 미세균열 성장을 일으키며, 암석의 강도 등에 영향을 미치기 때문에 반복하중에 의한 균열의 성장, 결합은 장시간 안정성 평가에 중요한 영향을 미친다. 본 연구에서는 두 개의 초기 균열을 가지는 모사 암석 시험편에 단조증가 및 반복하중을 가하여 하중 조건에 따른 균열의 성장과 결합유형을 조사하였다. 단조증가하중, 반복하중 시험 모두에서 서로 유사한 날개균열 시작 위치, 날개균열 각도, 균열 성장 순서, 균열 결합 형태가 관측되었다. 본 연구에서 관찰된 균열 결합은 크게 3종류로 전단에 의한 결합, 1개의 날개 혹은 인장 균열에 의한 결합 그리고 2개의 날개 혹은 인장 균열에 의한 결합으로 요약될 수 있다. 피로균열은 반복하중 시험에서만 발생하였으며 성장 방향은 이차균열과 유사하게 초기균열과 같은 방향 혹은 하중방향과 직교인 수평방향으로 관찰되었다.

Keywords

References

  1. 박남수, 전석원, 2001, 단축압축 하에서 대리석의 균열전파 및 결합, 한국암반공학회지, 제11권 3호, 217-224.
  2. 천대성 박찬, 정용복, 박철환, 송원경, 2011, 반복하중에 의한 암석과 콘크리트의 물성변화, 한국암반공학회 춘계학술발표회 논문집, 52-57.
  3. Attewell, P.B. and I. W. Farmer, 1973, Fatigue behaviour of rock. Int. J. Rock. Mech. Min. Sci. Vol. 10, 1-9. https://doi.org/10.1016/0148-9062(73)90055-7
  4. Bobet, A., 1997, Fracture coalescence in rock-type material: experimental observations and numerical predictions, Sc.D Thesis, M.I.T.
  5. Bobet, A. and H. H. Einstein, 1988, Fracture coalescence in rock-type materials under uniaxial and biaxial compression, Int. J. Rock Mech. Min. Sci. Vol. 35, No. 7, 863-888.
  6. Burdine, N.T., 1963, Rock failure under dynamic loading conditions, Soc. Petr. Eng. J. Vol. 3, 1-8. https://doi.org/10.2118/481-PA
  7. Chen, G., J. M. Kemeny, and S. Harpalani, 1995, Fracture propagation and coalescence in marble plates with pre-cut notches under compression, Proc. Symposium on Fractured and Jointed Rock Mass, Lake Tahoe, CA, 435-439.
  8. Costin, L.S. and D. J. Holcomb, 1981, Time-dependent failure of rock under cyclic loading. Tectonophysics Vol .79, 279-296. https://doi.org/10.1016/0040-1951(81)90117-7
  9. Erdogan, F. and G. C. Sih, 1963, On the crack extension in plates under loading and transverse shear, J. Basic Eng., Vol. 85, 519-527. https://doi.org/10.1115/1.3656897
  10. Haimson, B. C. and C. M. Kim, 1971, Mechanical behaviour of rock under cyclic fatigue, Proc. 13th Synposium on Rock Mechanics, New York:ASCE, 845-863.
  11. Hardy, H. R. and Y. P. Chugh, 1970, Failure of geologic materials under low cycle fatigue, Proc. Sixth Canadian Symposium on Rock Mechanics, Montreal, 33-47.
  12. Hussain, M. A., S. L. Pu, and J. Underwood, 1974, Strain energy release rate for a crack under combined mode I and mode II, Fracture Analysis, ASTM STP 560, 2-28.
  13. Ingraffea, A.R. and F.E. Heuze, 1980, Finite element models for rock fracture mechanics. Int. J. Num. Anal. Meth. Geom. Vol. 4, 25-43. https://doi.org/10.1002/nag.1610040103
  14. Jafari, M. K., K. A. Hosseini, and F. Pellet, 2003, Evaluation of shear strength of rock joints subjected to cyclic loading, Soil Dya. Ear. Eng. Vol. 23, 619-630. https://doi.org/10.1016/S0267-7261(03)00063-0
  15. Ko, T.Y., H. H. Einstein, J. Kemeny, 2006, Crack coalescence in brittle material under cyclic loading, Proc. 41st U.S. Symposium on Rock Mechanics, Golden, CO, Paper No. 06-930.
  16. Ko T.Y., 2005, Crack coalescence in rock-like material under cyclic loading, Civ. E. Thesis, Massachusetts Institute of Technology.
  17. Lajtai, E.Z., 1974, Brittle fracture in compression, Int. J. of Fract. Vol. 10, No. 4, 525-536. https://doi.org/10.1007/BF00155255
  18. Lee, H., and S. Jeon, 2010, An experimental study of crack coalescence in pre-cracked specimens under uniaxial compression, Proc. 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium, Salt Lake City, Utah, Paper No. 10-369.
  19. Li, N., W. Chen, P. Zhang, and G. Swoboda, 2001, The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading, Int. J. Rock Mech. Min. Sci., Vol. 38, No.7, 1071-1079. https://doi.org/10.1016/S1365-1609(01)00058-2
  20. Palinaswamy, K. and W. G. Knauss, 1972, Propagation of a crack under general, in-plane tension, Int. J. Frac. Mech., Vol. 8, 114-117. https://doi.org/10.1007/BF00185207
  21. Prost, C. L., 1988, Jointing at rock contacts in cyclic Loading, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Vol.25, No. 5, 263-272. https://doi.org/10.1016/0148-9062(88)90003-4
  22. Pruitt, L. and S. Suresh, 1993, Cyclic stress fields for fatigue cracks in amorphous solids- experimental measurements and their implications, Philosophical Magazine, A 67, 1219-1245.
  23. Reyes, O. and H.H. Einstein, 1991, Failure mechanism of fractured rock - a fracture coalescence model, Proc. 7th International Congress of Rock Mechanics, Vol. 1, 333-340.
  24. Sagong, M. and A. Bobet, 2002, Coalescence of multiple flaws in a rock-model material in uniaxial compression, Int. J. Rock Mech. Min. Sci. Vol. 39, 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
  25. Sagong, M., 2001, The study on the fracture of multiple flaw specimenms, Ph. D. Dissertation, Purdue University.
  26. Shen, B., O. Stephansson, H. H. Einstein, and B. Ghahreman, 1995, Coalescence of fracture under shear stresses in experiments, J. Geophys. Res. Vol. 100, B4, 5975-5990. https://doi.org/10.1029/95JB00040
  27. Sih, G. C., 1973, Mechanics of fracture, Noordhoff International Pub.
  28. Wong, R. H. C., and K. T. Chau, 1998, Crack coalescence in a rock-like material containing two cracks, Int. J. Rock Mech. Min. Sci., Vol. 35, No. 2, 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3
  29. Zhenyu, T. and M. Haihong, 1990, An experimental study and analysis of the behaviour of rock under cyclic loading, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Vol. 27, No. 1, 51-56.