Chemical Constituents of Abies koreana Leaves with Inhibitory Activity against Nitric Oxide Production in BV2 Microglia Cells

  • Baek, Sa-Wang (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, E. Ray (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Jin-Woong (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Young-Choong (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • 투고 : 2011.07.20
  • 심사 : 2011.08.25
  • 발행 : 2011.09.30

초록

Eleven compounds were isolated from fresh leaves of Abies koreana (Pinaceae), and structures of these compounds were determined to be 3-hydroxy-2-methyl-4-pyrone (1), maltol-3-O-${\beta}$-D-glucoside (2), (-)-epicatechin (3), naringenin 7-O-${\beta}$-D-glucopyranoside (4), naringenin-7-O-rhamnoglucoside (5), kaempferol 3-O-${\beta}$-D-glucopyranoside (6), (+)-isolariciresinol (7), secoisolariciresinol (8), rhododendrol (9), ferulic acid (10) and 4-(4-hydroxyphenyl)butan-2-one (rheosmin) (11) by comparing $^1H$-, $^{13}C$-NMR and MS spectroscopic data with reference values. Compounds 3, 5, 7, 8, 9, 10, 11 were isolated for the first time from A. koreana. Among eleven isolates, compounds 1, 7 and 11 showed inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 microglia in a concentration dependent manner.

키워드

참고문헌

  1. Ahn, D.K., Illistrated Book of Korean Medicinal Herbs. Kyo-Hak Publishing Co., Ltd, Seoul (2002).
  2. Akiyama, T., Yamada, M., Yamada, T., and Maitani, T., Naringin glycoside $\alpha$-glucosylated on ring B found in the natural food additives, enzymatically modified naringin. Biosci. Biotechnol. Biochem., 64, 2246-2249 (2000). https://doi.org/10.1271/bbb.64.2246
  3. Alderton, W.K., Cooper, C.E., and Knowles, R.G., Nitric oxide synthases: structure, function and inhibition. Biochem. J., 357, 593-615 (2001). https://doi.org/10.1042/0264-6021:3570593
  4. Anselmi, C., Centini, M., Ricci, M., Bupnocore, A., Granata, P., Tsuno, T., and Facino, R.M. Analytical characterization of the ferulic acid/$\gamma$-cyclodextrin inclusion complex. J. Pharm. Biomed. Anal., 40, 875-881 (2006). https://doi.org/10.1016/j.jpba.2005.08.019
  5. Baderschneider, B. and Winterhalter, P., Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from riesling wine and screening for antioxidant activity. J. Agric. Food Chem., 49, 2788-2798 (2001). https://doi.org/10.1021/jf010396d
  6. Bagci, E. and Digrak, M., Antimicrobial activity of essential oils of some Abies species from Trukey. Flavour Fragr. J.,11, 251-256 (1996). https://doi.org/10.1002/(SICI)1099-1026(199607)11:4<251::AID-FFJ577>3.0.CO;2-K
  7. Baran, S., Von R., Stephan H., Konig, W.A., and Kalemba, D., Composition of the essential oil of Abies koreana Wils. Flavour Fragr. J.,22,78-83 (2007). https://doi.org/10.1002/ffj.1762
  8. Cho, J.Y., Kim, A.R., and Park, M.H., Lignans from the rhizomes of Coptis japonica differentially act as anti-inflammatory principles. Planta Medica, 67, 312-316 (2001). https://doi.org/10.1055/s-2001-14322
  9. Choi, J.S., Woo, W.S., Young H.S., and Park, J.H. Phytochemical study on Prunus davidiana. Arch. Pharm. Res., 13, 374-378 (1990). https://doi.org/10.1007/BF02858178
  10. Das, B., Padma Rao, S., Srinivas, K.V.N.S., and Yadav, J.S., Stereospecific synthesis and absolute configuration of (+)-rhododendrol. Phytochemistry, 33, 1529-1530 (1993). https://doi.org/10.1016/0031-9422(93)85127-D
  11. Eguchi, H., Fujiwara, N., Sakiyama, H., Yoshihara, D., and Suzuki, K., Hydrogen peroxide enhances LPS-induced nitric oxide production via the expression of interferon beta in BV-2 microglial cells. J. Neuropathol. Exp. Neurol. 67, 1149-1158 (2008). https://doi.org/10.1097/NEN.0b013e31818e5e99
  12. Esra K., Nurgün E., Erdem Y., and Bilge S., Anti-inflammatory and antinociceptive activity of taxoids and lignans from the heartwood of Taxus baccata L. J. Ethnopharmacol. , 89, 265-270 (2003). https://doi.org/10.1016/j.jep.2003.09.005
  13. Fonseca, S.F., De Paiva Campello, J., Barata, L.E.S., and Edmundo A. Ruveda, E.A., $^{13}C$ NMR spectral analysis of lignans from Araucaria angustifolia. Phytochemistry , 17, 499-502 (1978). https://doi.org/10.1016/S0031-9422(00)89347-4
  14. Heales J.R., Bolanos J.P., Stewart V.C., Brooke P.S. Land J.M., and Clark J.B., Nitric oxide, mitochondrial and neurological disease. Biochim. Biophys. Acta., 1410, 215-228 (1999) https://doi.org/10.1016/S0005-2728(98)00168-6
  15. Jeong S.I., Lim, J.P., and Jeon, H., Chemical composition and antibacterial activities of the essential oil from Abies koreana. Phytother. Res., 21, 1246-1250 (2007). https://doi.org/10.1002/ptr.2229
  16. Jeong, J.B. and Jeong, H.J., Rheosmin, a naturally occurring phenolic compound inhibits LPS-induced iNOS and COX-2 expression in RAW 264.7 cells by blocking NF-$\kappaB$ activation pathway. Food Chem. Toxicol., 48, 2148-2153 (2010). https://doi.org/10.1016/j.fct.2010.05.020
  17. Kang, K.S., Yokozawa, T., Kim, H.Y., and Park, J.H., Study on the nitric oxide scavenging effects of ginseng and its compounds. J. Agric. Food Chem., 54, 2558-2562 (2006) https://doi.org/10.1021/jf0529520
  18. Khallouki, F., Haubner, R., Hull, W.E., Erben, G., Spiegelhalder, B., Bartsch, H., and Owen, R.W., Isolation, purification and identification of ellagic acid derivatives, catechins, and procyanidins from the root bark of Anisophyllea dichostyla R. Br., Food Chem. Toxicol., 45, 472-485 (2007). https://doi.org/10.1016/j.fct.2006.09.011
  19. Kim, H.J., Choi, E.H., and Lee, I.S., Two lanostane triterpenoids from Abies koreana. Phytochemistry, 65, 2545-2549 (2004). https://doi.org/10.1016/j.phytochem.2004.07.007
  20. Kim, H.J., Le, Q.K., Lee, M.H., Kim, T.S., Lee, H.K., Kim, Y.H., Bae, K., and Lee, I.S., A cytotoxic secocycloartenoid from Abies koreana. Arch. Pharm. Res., 24, 527-531 (2001). https://doi.org/10.1007/BF02975159
  21. Kim, K., Bu, Y., Jeong, S., Lim, J., Kwon, Y., Cha, D.S., Kim, J., Jeon, S., Eun, J., and Jeon, H., Memory-enhancing effect of a supercritical carbon dioxide fluid extract of the needles of Abies koreana on scopolamine-induced amnesia in mice. Biosci. Biotechnol. Biochem., 70, 1821-1826 (2006). https://doi.org/10.1271/bbb.50608
  22. Kim, Y.G., Lee, H., Ozawa, S., Sasaya, T., and Moon, C.K., Lignans of Abies koreana Wilson. Mokuzai Gakkaishi, 40, 414-418 (1994).
  23. Kovganko, N.V., Kashkan, Z.N., and Krivenok, S.N., Bioactive substances of the flora Belarus. Chem. Nat. Compounds, 38, 328-330 (2002). https://doi.org/10.1023/A:1021669823445
  24. Li, W.W. and Huang, W.P., Synthesis of maltol and maltol-3-$\beta$-Dglucoside. Chin. J. Syn. Chem., 12, 391-393 (2004).
  25. Oh, H.J., Ahn, H.M., So, K.H., Kim, S.S., Yun P.Y., Jeon, G.L., and Riu, K.Z., Chemical and antimicrobial properties of essential oils from three coniferous trees Abies Koreana, Cryptomeria japonica, and Torreya nucifera. J. Appl. Biol. Chem., 50, 164-169(2007).
  26. Smith, L.R., Rheosmin ("Raspberry ketone") and zingerone, and their preparation by crossed aldol-catalytic hydrogenation sequences. Chem. Educ., 1, 1-18 (1996).