DOI QR코드

DOI QR Code

New Strategy for the Synthesis of 5-Aryl-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]2,2',4,4',6'(3H,3'H,5H)-pentaones and Their Sulfur Analogues

  • Received : 2011.04.27
  • Accepted : 2011.07.29
  • Published : 2011.09.20

Abstract

Reaction of barbituric acid (BA), 1,3-dimethyl barbituric acid (DMBA) and 2-thiobarbituric acid (TBA) with cyanogen bromide and aldehydes in the presence of L-(+)-tartaric acid afforded a new route for the synthesis of stable heterocyclic 5-aryl-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]2,2',4,4',6'(3H,3'H,5H)-pentaones which is a dimeric form of barbiturate (uracil and thiouracil derivative). In the reaction of 1,3-diethyl thiobarbituric acid (DETBA) the Knoevenagel condensation and then Michael adducts were obtained under the same condition. Structure elucidation is carried out by $^1H$ NMR, $^{13}C$ NMR, FT-IR and Mass analyses. Mechanism of the formation is discussed.

Keywords

References

  1. Campaigne, E.; Ellis, R. L.; Bradford, M.; Ho, J. J. Med. Chem. 1969, 12, 339-342. https://doi.org/10.1021/jm00302a041
  2. Kotha, S.; Deb, A. C.; Kumar, R. V. Bioorg. Med. Chem. Lett. 2005, 15, 1039-1043. https://doi.org/10.1016/j.bmcl.2004.12.034
  3. Brown, D. J. Comprehensive heterocyclic chemistry, Katritzky, A. R., Rees, C. W., Eds., Pergamon: Oxford, 1984, Vol 3.
  4. Naya, S. I.; Miyama, H.; Yasu, K.; Takayasu, T.; Nitta, M. Tetrahedron 2003, 59, 1811-1821. https://doi.org/10.1016/S0040-4020(03)00118-2
  5. Capella-Peiro, M.-E.; Carda-Broch, S.; Monferrer-Pons, L.; Esteve-Romero, J. Anal Chim Acta 2004, 517, 81-87. https://doi.org/10.1016/j.aca.2004.05.014
  6. Pelletier, O.; Campbell, J. A. J. Pharm. Sci. 1962, 51, 594-595. https://doi.org/10.1002/jps.2600510624
  7. Pelletier, O.; Campbell, J. A. J. Pharm. Sci. 1961, 50, 926-928. https://doi.org/10.1002/jps.2600501109
  8. Kumar, V. Synlett 2005, 10, 1638.
  9. Martin, D.; Bauer, M. Org. Synth. Coll.; John Wiley & Sons: London, 1990; 7, 435.
  10. Gross, E.; Witkop, B. J. Am. Chem. Soc. 1961, 83, 1510-1511. https://doi.org/10.1021/ja01467a052
  11. McCallum, P. B. W.; Grimmett, M. R.; Blackman, A. G.; Weavers, R. T. Aust. J. Chem. 1999, 52, 159-166. https://doi.org/10.1071/C98105
  12. Tanner, D. D.; Lycan, G.; Bunce, N. J. Can. J. Chem. 1970, 48, 1492-1497. https://doi.org/10.1139/v70-244
  13. Alberola, A.; Andres, C.; Ortega, A. G.; Pedrosa, R.; Vicente, M. Synthetic Commun. 1986, 16, 1161-1165. https://doi.org/10.1080/00397918608056361
  14. Brown, D. J.; Mason, S. F. Chemistry of Heterocyclic Compounds, The pyrimidines; John Wiley & Sons: Inc., New York, 1962; Vol. 16.
  15. Jalilzadeh, M.; Noroozi Pesyan, N.; Rezaee, F.; Rastgar, S.; Hosseini, Y.; ahin, E. Mol. Divers. 2011, 15, 721-731. https://doi.org/10.1007/s11030-011-9302-9
  16. Hosseini, Y.; Rastgar, S.; Heren, Z.; Büyükgüngör, O.; Noroozi Pesyan, N. J. Chin. Chem. Soc. 2011, 58, 309-318. https://doi.org/10.1002/jccs.201190031
  17. Elinson, M. N.; Vereshchagin, A. N.; Stepanov, N. O.; Belyakov, P. A.; Nikishin, G. I. Tetrahedron Lett. 2010, 51, 6598-6601. https://doi.org/10.1016/j.tetlet.2010.10.041
  18. Jursic, B. S.; Stevens, E. D. Tetrahedron Lett. 2003, 44, 2203- 2210. https://doi.org/10.1016/S0040-4039(03)00111-4
  19. McClenaghan, N. D.; Absalon, C.; Bassani, D. M. J. Am. Chem. Soc. 2003, 125, 13004-13005. https://doi.org/10.1021/ja0372098
  20. Huang, C.-H.; McClenaghan, N. D.; Kuhn, A.; Bravic, G.; Bassani, D. M. Tetrahedron 2006, 62, 2050-2059. https://doi.org/10.1016/j.tet.2005.09.150
  21. Moskvin, A. V.; Reznikova, N. R.; Ivin, B. A. Russian J. Org. Chem. 2002, 38, 463-474. https://doi.org/10.1023/A:1016574401192
  22. Tanaka, K.; Cheng, X.; Kimura, T.; Yoneda, F. Chem. Pharm. Bull. 1986, 34, 3945-3948. https://doi.org/10.1248/cpb.34.3945
  23. Tanaka, K.; Cheng, X.; Kimura, T.; Yoneda, F. Chem. Pharm. Bull. 1988, 36, 60-69. https://doi.org/10.1248/cpb.36.60
  24. Figueroa-Villar, J. D.; Cruz, E. R. Tetrahedron 1993, 49, 2855- 2862. https://doi.org/10.1016/S0040-4020(01)80384-7
  25. Zoorob, H. H.; Abou-El Zahab, M. M.; Abdel-Mogib, M.; Ismail, M. A. Tetrahedron 1996, 52, 10147-10158. https://doi.org/10.1016/0040-4020(96)00537-6
  26. Adamson, J.; Coe, B. J.; Grassam, H. L.; Jeffery, J. C.; Coles, S. J.; Hursthouse, M. B. J. Chem. Soc. Perkin Trans. 1 1999, 2483- 2488.
  27. Jursic, B. S.; Neumann, D. M.; Moore, Z.; Stevens, E. D. J. Org. Chem. 2002, 67, 2372-2374. https://doi.org/10.1021/jo0161431
  28. Noroozi Pesyan, N.; Rastgar, S.; Hosseini, Y. Acta Cryst. Sect. E 2009, 65, o1444. https://doi.org/10.1107/S1600536809019618
  29. Noroozi Pesyan, N. Magn. Reson. Chem. 2009, 47, 953-958. https://doi.org/10.1002/mrc.2498
  30. Rimaz, M.; Noroozi Pesyan, N.; Khalafy, J. Magn. Reson. Chem. 2010, 48, 276-285. https://doi.org/10.1002/mrc.2573
  31. Asiri, A. M.; Khan, S. A.; Ng, S. W. Acta Cryst. Sect. E 2009, 65, o1860-o1861. https://doi.org/10.1107/S160053680902618X
  32. Zhang, Y.; Wang, C.-S. J. Comput. Chem. 2009, 30, 1251-1260. https://doi.org/10.1002/jcc.21141
  33. Yang, D.; Ng, F.-F.; Li, Z.-J.; Wu, Y.-D.; Chan, K. W. K.; Wang, D.-P. J. Am. Chem. Soc. 1996, 118, 9794-9795. https://doi.org/10.1021/ja960515j
  34. Yang, D.; Qu, J.; Li, B.; Ng, F.-F.; Wang, X.-C.; Cheung, K.-K.; Wang, D.-P.; Wu, Y.-D. J. Am. Chem. Soc. 1999, 121, 589-590. https://doi.org/10.1021/ja982528y
  35. Ligtenbarg, A. G. J.; Hage, R.; Meetsma, A.; Feringa, B. L. J. Chem. Soc., Perkin Trans. 2 1999, 807-812.
  36. Peter, C.; Daura, X.; van Gunsteren, W. F. J. Am. Chem. Soc. 2000, 122, 7461-7466. https://doi.org/10.1021/ja000873t
  37. Vogel, A. Textbook of Practical Organic Chemistry (VOGEL'S), 4th, ed.; Longman: New York, 1978.
  38. Hartman, W. W.; Dreger. E. E. Org. Synth. Coll. 1943, 2, 150.

Cited by

  1. ChemInform Abstract: New Strategy for the Synthesis of 5-Aryl-1H,1′H-spiro[furo [2,3-d]pyrimidine-6,5′-pyrimidine]-2,2′,4,4′,6′(3H,3′H,5H)-pentaones and Their Sulfur Analogues vol.43, pp.10, 2012, https://doi.org/10.1002/chin.201210179
  2. A New, Fast and Easy Strategy for One-pot Synthesis of Full Substituted Cyclopropanes: Direct Transformation of Aldehydes to 3-Aryl-1,1,2,2-tetracyanocyclopropanes vol.60, pp.1, 2012, https://doi.org/10.1002/jccs.201200189
  3. Unique charge-separated intermolecular and eight-membered intramolecular H-bonds in bis-(thio)barbiturates vol.11, pp.1, 2014, https://doi.org/10.1007/s13738-013-0273-x
  4. Solvent-free, one-pot synthesis of pentasubstituted cyclopropanes in the presence of BrCN and EtONa by milling vol.145, pp.7, 2014, https://doi.org/10.1007/s00706-014-1180-2
  5. New synthetic protocol for stereoselective synthesis of diethyl 1,2-dicyano-3-alkyl-(aryl)cyclopropane-1,2-dicarboxylate vol.12, pp.7, 2015, https://doi.org/10.1007/s13738-015-0590-3
  6. N vol.62, pp.3, 2015, https://doi.org/10.1002/jccs.201400224
  7. Synthesis of Spiro‐dihydrofuran in the Presence of a Novel and Reusable Nanocatalyst Cu (II)‐Glycerol/MCM‐41 vol.33, pp.8, 2011, https://doi.org/10.1002/aoc.4997
  8. One‐pot, fast cyclopropanation reaction of indandione with various aldehydes in the presence of cyanogen bromide and trimethylamine vol.66, pp.11, 2019, https://doi.org/10.1002/jccs.201800419
  9. New, stable and reusable magnetic Fe3O4/PEG@CPTMS-thioaminophenol@Ni nanocatalyst for the synthesis of dispiro-cyclopropanes’s Meldrum’s acid vol.17, pp.2, 2011, https://doi.org/10.1007/s13738-019-01775-3
  10. 4‐METHYL morpholinium bis‐(thio)barbiturates: Synthesis, structure, anticancer evaluation, and COMFA study vol.67, pp.9, 2011, https://doi.org/10.1002/jccs.202000057