• Title/Summary/Keyword: Uracil

Search Result 173, Processing Time 0.026 seconds

Effects of pyrimidine salvage inhibitors on uracil incorporation of Toxoplasma gondii (Toxoplasma gondii의 활성화된 uracil 도입 과정에 미치는 pyrimidine 대사 억제제의 영향)

  • 윤지혜;남호우
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.2
    • /
    • pp.79-84
    • /
    • 1990
  • Metabolic inhibitors which act in the process of pyrimidine salvage influenced on the uracil incorporation into nucleic acids of Toxoplasma. Inhibitors of dihydrofolate reductase, pyrimethamine and methotrexate, and inhibitors of thymidylate synthase, fluoro-uridine, fluoro·dUMP and fluoro-uracil, diminished isotopic uracil uptake in dose-dependent manners. Azauridine which suppresses do novo pyrimidine biosynthesis did not affect the salvage even in a relatively high dose. These results suggested that the activation of uracil salvage should be closely related with the function of TMP biosynthetic enzymes. The pattern of thymidine uptake had no differences between control HL-60 cells and Toxoplasma infected cells, which did not reject the specific proliferation of Texoplasma. It can be exploited to characterize the elects of various compounds related with the proliferation of Toxoplasma, especially its DNA synthesis. Key words: Toxoplasma gondii, uracil salvage, dihydrofolate reductase, thymidylate synthase TMP biosynthesis.

  • PDF

Synthesis and Characterization of Palladium (IV) Complexes with Guanine, Adenine, and Uracil Base (Guanine, Adenine 및 Uracil 염기를 갖는 팔라듐 (IV) 착물의 합성과 그 성질)

  • Oh Sang Oh;Chung Duck Young;Kim Hee Seon
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.679-684
    • /
    • 1992
  • New Pd(IV) complexes have been prepared through the reactions of $trans-[Pd(en)_2Cl_2](ClO_4)_2 $(en = ethylenediamine) with Guanine, Adenine, or Uracil anion as purine and pyrimidine base. We identified the ratio of central metal versus ligands by $C{\cdot}H{\cdot}N$ elemental analysis and proposed the coordinating site of the base by infrared spectrum, $^1H-NMR,\; and\; ^{13}C$-NMR spectrum. Guanine or Adenine ligand coordinated at N7 site and an en ligand exchanged for $ClO_4^-$ counter ions of the starting material . As these results, the complexes showed the formula $[Pd(en)L_2(ClO_4)_2](ClO_4)_2{\cdot}(en)$, (L = Guanine, Adenine). But in the Uracil complex no exchange of the en ligand and $ClO_4^-$ occured and Uracil anion preferred the N1 to N3 as coordinating site, the complex $[Pd(en)_2(Urac)_2](ClO_4)_2(Urac = Uracil anion).$

  • PDF

Characteristics of Chlorination Byproducts Formation of Urinary Organic Compounds (뇨 성분에서의 염소 소독부산물 생성 특성)

  • Seo, In-Sook;Son, Hee-Jong;Ahn, Wook-Sung;You, Sun-Jae;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.286-292
    • /
    • 2008
  • This study was conducted to analyze and determine the formation potential of chlorination DBPs from seven urinary compounds with or without Br$^-$. Three of seven components were kynurenine, indole and uracil that were relatively shown high the formation potential of chlorination DBPs concentrations. The reported results of THMs/DOC with or without Br$^-$ in kynurenine showed that THMs/DOC was detected 86.9 $\mu$g/mg when Br$^-$ was not added, and THMs/DOC was detected 100.8 $\mu$g/mg when Br$^-$ was presented. In indole, THMs/DOC was increased from 6.58 $\mu$g/mg to 31.4 $\mu$g/mg when Br$^-$ was added. Moreover, among them, the highest, second-highest and third-highest HAAs/DOC were shown in kynurenine, uracil and indole respectively. Specially, HAAs/DOC was significantly deceased in kynurenine and indole when Br$^-$ was presented. This was a totally different phenomenon for THMs/DOC. TCAA was dominated in HAAs for kynurenine and indole, and DCAA was also dominated in HAAs for uracil. The highest formation of HANs/DOC was shown in kynurenine whether or not Br$^-$ presented, and DCAN was predominant in HANs. HANs was not formed by chlorination in uracil. In addition, the formation of CH/DOC was relatively low in kynurenine and indole. The formation of CH/DOC was specially high(1,270 $\mu$g/mg) in uracil when Br$^-$ was not added. The formation of CH/DOC was 1,027 $\mu$g/mg in uracil when Br$^-$ was added. The formations of THMs and HAAs were also investigated in kynurenine, indole and uracil when Br$^-$ was presented or not. The formation of THMs/DOC was higher in kynurenine and indole when Br$^-$ was presented. The formation of HAAs/DOC was reduced in kynurenine when Br$^-$ was added. The result could be attributed to higher formation of THMs/DOC in kynurenine when Br$^-$ was added. The formation of HAAs/DOC was also reduced in indole when Br$^-$ was added. To the contrary, this result was not attributed to higher formation of THMs/DOC in indole when Br$^-$ was added.

Synthesis of a series of cis-diamminaedichloro-platinum (II) Complexes Linked to Uracil and Uridine as Candidate An-titumor Agents.

  • Kim, Jack-C.;Kim, Mi-Hyang;Kim, Seon-Hee;Choi, Soon-Kyu
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.449-453
    • /
    • 1995
  • The search for patinum (II)-based compounds with improved therapeutic properties was prompted to design and synthesize a new family of water-soluble, third generation cis-diamminedichlorplatinum (II) complexes linked to uracil and uridine. Six heretofore undescribed uracil and uridine-platinum (II) complexes are ; [N-(2-aminoethyl)uracil-5-carboxamide]dichloroplatinum (II)(3a), [N-2(2-aminoethyl)uracil-6-carboxmide]dichloroplatinum (II) (3b),[5-(2-aminorthyl)carbamoyl-2',3',5',-tri-O-acetyluridine] dichloroplatinum (II) (6b), [5-(2-aminoethyl)-carbamoyl]-2',3',5',-tri-O-acetyluridine] dichloroplatinum (II) (6b), [5-(2-aminoethyl)carbamoylu-ridine]dihloroplatinum (II) (7a), [6-(2-aminoethyl)carbamoyluridine]dichloroplatinum (II) (7b). These analogues were prepared from the key starting materials, 5-carboxyuracil (1a) and 6-carboxyuracil (1b) which were reacted with ethylenediamine to afford the respective N-(2-aminoethyl)uracil-5-carboxmide (2a) land N-(2-aminoethyl)uracil-6-carboxamide (2b). The cisplatin complexes 3a and 3b were obtained through the reaction of the respective 2a and 2b ficiently introduced on the .betha.-D-ribose ring via a Vorbruggen-type nucleoside coupling procedure with hexamethyldisilazane, trimethylchlorosilane and stannicchloride under anhydrous acetonitfile to yield the sterospecific .betha.-anomeric 5-carboxy-2',3',5'-tri-O-acetyluridine (4a) and 6-carboxy-2',3',5'-tri-O-acetyluridine (4b), respective 5-(2-aminoethyl)carbamoyl-2',3',5'-tri-O-acetyluridine (5a) and 6-(2-aminoethyl)carbamoyl-2',3',5'-tri-O-acetyluridine (5b). The diamino-uridines 5a and 5b were reacted with potassium tetrachloroplatinate (II) to give the novel nucleoside complexes, 6a and 6b respectively which were deacetylated into the free nucleosides, 7a and 7b by the treatment with CH/sub 3/ONa. The antitumor activities were evaluated against three cell lines (K-562, FM-3A and P-388).

  • PDF

Development of Eimeriu tenezla in MDEK cell culture with a note on enhancing effeet of preincubation with chicken spleen cells (MDBK 세포 배양에서 Eimeria tenella 발육 상황 및 닭 비장세포에 의한 발육 항진 효과)

  • 채종일;이순형
    • Parasites, Hosts and Diseases
    • /
    • v.27 no.2
    • /
    • pp.87-100
    • /
    • 1989
  • Eimeria tenella, an intracellular protozoan parasite infecting the epithelial cells of the ceca of chickens, causes severe diarrhea and bleeding that can lead its host to death. It is of interest that 2. tenezla first penetrate into the mucosal intraepithelial Iymphocytes (IEL) before they parasitize crypt or villous epithelial cells. This in vitro study was undertaken to know whether the penetration of E. tenella into such a lymphoid cell is a beneficial step for the parasite survival and development. Three sequential experiments were performed. First, the in vitro established bovine kidney cell line, MDBK cells, were evaluated for use as host cells for E. tenella, through morphological observation. Second, the degree of parasite development and multiplication in MDBK cells was quantitatively assayed using radioisotope labelled uracil ($^3H-uracil$) . Third, the E. tenella sporozoites viability was assayed after preincubation of them with thicken spleen cells. E. tenella oocysts obtained from the ceca of the infected chickens were used for the source of the sporozoites. Spleen cells (I) obtained from normal chickens (FP strain) were preincubated with the sporozoites (T) at the E:T ratio of 100:1, 50:1 or 25:1 for 4 or 12 hours, and then the mixture was inoculated into the MDBK cell monolayer. Morphologically the infected MDBK cells revealed active schisogonic cycle of E. tenella in 3~4 days, which was characterized by the appearance of trophozoites, and immature and mature schizonts containing merogoites. The 3H-uracil uptake by E. tenella increased gradually in the MDBK cells, which made a plateau after 48~60 hours, and decreased thereafter. The uptake amount of $^3H-uracil$ depended not only upon the inoculum sixte of the sporozoites but also on the degree of time delay (preincubation; sporozoites only) from excystation to inoculation into MDBK cells. The 3H-uracil uptake became lower as the preincubation time was prolonged. In comparison, after preincubation of sporozoites with spleen cells for 4 or 12 hours, the 3H-uracil uptake was significantly increased compared with that of control group. From the results, it was inferred that, although the penetration of E. tenella sporozoites into the lymphoid cells such as IEL is not an essential step, it should be at least a beneficial one for the survival and development of sporozoites in the chicken intestine.

  • PDF

Escherichia coli-Derived Uracil Increases the Antibacterial Activity and Growth Rate of Lactobacillus plantarum

  • Ha, Eun-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.975-987
    • /
    • 2016
  • Lactobacillus plantarum (L. plantarum) is a representative probiotic. In particular, L. plantarum is the first commensal bacterium to colonize the intestine of infants. For this reason, the initial settlement of L. plantarum can play an important role in determining an infant's health as well as their eventual health status as an adult. In addition, L. plantarum combats pathogenic infections (such as Escherichia coli (E. coli), one of the early pathogenic colonizers in an unhealthy infant gut) by secreting antimicrobial substances. The aim of this research was to determine how L. plantarum combats E. coli infection and why it is a representative probiotic in the intestine. Consequently, this research observed that E. coli releases uracil. L. plantarum specifically recognizes E. coli-derived uracil, which increases the growth rate and production of antimicrobial substance of L. plantarum. In addition, through the inhibitory activity test, this study postulates that the antimicrobial substance is a protein and can be considered a bacteriocin-like substance. Therefore, this research assumes that L. plantarum exerts its antibacterial ability by recognizing E. coli and increasing its growth rate as a result, and this phenomenon could be one of the reasons for L. plantarum settling in the intestine of infants as a beneficial bacterium.