DOI QR코드

DOI QR Code

Effect of Bath Conditions and Current Density on Stress and Magnetic Properties of Ni-Fe Nano Thin Films Synthesized by Electrodeposition Methods

전기도금법으로 제조한 Ni-Fe 나노박막의 스트레스와 자기적 특성에 미치는 용액의 조건 및 전류밀도의 영향

  • Koo, Bon-Keup (Division of Advanced Materials Engineering, Hanbat National University)
  • 구본급 (한밭대학교 공과대학 신소재공학부)
  • Received : 2011.07.31
  • Accepted : 2011.08.30
  • Published : 2011.08.31

Abstract

The internal stress and magnetic properties (coercivity and squareness) of Ni-Fe nano thin film synthesized by electrodeposition method were studied as a function of acidic chloride bath conditions (composition and temperature) and current density. Fe deposition patterns were different depending on the temperature of the solution, the stress of film decreased with increasing the solution temperature, and the depending on the amount of Fe deposition showed a parabolic shape. The grain size of film was inversely proportional to stress of thin film. The internal stress of thin film and magnetic properties were deeply relevant, and the stress of thin film had a relationship with bath conditions and grain size of the thin film surface.

Keywords

References

  1. F. E. Atalay, H. Kayaa, S. Atalay, S. Tari, J. Alloys and Com. and Phys., 458 (2009) 469.
  2. V. S. Rania, S. S. Yoon, B. P. Raoc, C. Kim, Mater. Chem. and Phys., 112 (2008) 1133. https://doi.org/10.1016/j.matchemphys.2008.07.015
  3. R. L. White, R. M. H. New, R. F. W. Pease, IEEE Trans. on Magnetics, 33 (1997) 990. https://doi.org/10.1109/20.560144
  4. T. Osaka, Electrochim. Acta, 44 (1999) 3885. https://doi.org/10.1016/S0013-4686(99)00095-X
  5. E. Gomez, E. Pellicer, E. Valles, Electrochem. Comm., 7 (2005) 275. https://doi.org/10.1016/j.elecom.2005.01.004
  6. E. I. Cooper, C Bonhote, J. Heidmann, Y. Hsu, P. Kern, J. W. Lam, M. Ramasubramanian, N. Robertson, L. T. Romankiw, H. Xu, IBM J. Res. Develop., 49 (2005) 103. https://doi.org/10.1147/rd.491.0103
  7. F. E. Rasmussen, J. T. Ravnkilde, P. T. Tang, Sensors and Actuators A, 92 (2001) 242. https://doi.org/10.1016/S0924-4247(01)00556-8
  8. S. Guan, B. J. Nelson, J. Electrochem. Soc., 152 (2005) C90.
  9. A. Kohn, M. Eizenberg, Y. Sverdlov, Mater. Sci. Eng. A, 302 (2001) 18. https://doi.org/10.1016/S0921-5093(00)01348-4
  10. A. Brenner, Electrodeposition of Alloys, Academic Press New York, (1963) 84.
  11. N. Zech, E. J. Podlaha, D. Landolt, J. Electrochem. Soc., 146 (1999) 2886. https://doi.org/10.1149/1.1392024
  12. N. Zech, E. J. Podlaha, D. Landolt, J. Electrochem. Soc., 146 (1999) 2892. https://doi.org/10.1149/1.1392025
  13. N. V. Myung, L. Lim, J. P. Fluerial, M. Yun, W. West, D. Choi, Nanotechnology, 15 (2004) 833. https://doi.org/10.1088/0957-4484/15/7/021
  14. J. Vaes, J. Fransaer, J.-P. Celis, J. Electrochem. Soc., 147 (2000) 3718. https://doi.org/10.1149/1.1393963
  15. J. Vaes, J. Fransaer, J.-P. Celis, J. Electrochem. Soc., 149 (2002) C56. https://doi.org/10.1149/1.1475693
  16. B. K. Koo, B. Y. Yoo, Surface and Coating Technology, 205 (2010) 740. https://doi.org/10.1016/j.surfcoat.2010.07.076