Computer-guided template를 이용한 임플란트 식립에서 술 전과 술 후 사이의 임플란트 위치에 따른 변위량 검사

Deviations of Implant Position between Pre- and Post-operation in Computer-guided Template-based Implant Placement

  • 김원 (인하대학교 의과대학 치과보철학교실) ;
  • 김승미 (인하대학교 의과대학 치과보철학교실) ;
  • 김효정 (인하대학교 의과대학 치과보철학교실) ;
  • 송은영 (인하대학교 의과대학 치과보철학교실) ;
  • 이시호 (인하대학교 의과대학 치과보철학교실) ;
  • 오남식 (인하대학교 의과대학 치과보철학교실)
  • Kim, Won (Department of Prosthodontics, Inha University) ;
  • Kim, Seung-Mi (Department of Prosthodontics, Inha University) ;
  • Kim, Hyo-Jung (Department of Prosthodontics, Inha University) ;
  • Song, Eun-Young (Department of Prosthodontics, Inha University) ;
  • Lee, Si-Ho (Department of Prosthodontics, Inha University) ;
  • Oh, Nam-Sik (Department of Prosthodontics, Inha University)
  • 투고 : 2011.04.20
  • 심사 : 2011.06.25
  • 발행 : 2011.06.30

초록

Computer-guided system은 술 전에 임플란트 위치를 계획하고 이와 일치하도록 구강 내에 임플란트를 식립할 수 있게 하는 방법이다. 하지만 이렇게 임플란트를 식립한다 할지라도 실제 매식된 임플란트의 위치는 원래 계획하였던 위치와 차이가 있을 수 있다. 이 연구의 목적은 실제 임상에서 computer guided system을 이용하여 임플란트를 식립한 환자들의 경우 계획한 위치와 실제 식립된 임플란트 사이에 발생하는 변위량의 범위를 알아보고 그 임상적 적합성을 평가하는 것이다. 'NobelGuide' system (Nobel Biocare AB, G$\ddot{o}$teborg, Sweden)을 이용하여 Br${\aa}$nemark MK III Groovy RP (Nobel Biocare AB, G$\ddot{o}$teborg, Sweden)임플란트 식립을 시행 받은 다섯 명의 환자를 선정하였다. 수술용 형판에 지대주 유사체를 연결한 후 술 전 측정 모형을 제작하였고 최종 보철물 제작 시 최종 인상을 채득하여 술 후 측정 모형을 제작하였다. 두 측정 모형의 CT 방사선 사진을 촬영 후 3차원적으로 재현하였고 재현된 모델 상에서 식립된 임플란트 위치를 지정하였다. 각 임플란트는 임플란트 경부와 첨단의 중심점을 연결하여 임플란트 축을 설정하였으며 두 축 간의 각도가 측정되었다. 임플란트 간 거리는 각 임플란트의 경부에서, 설정된 임플란트 축이 지나가는 중심점 간의 거리를 측정하였다. 총 5명 환자의 58개 부위의 임플란트 간 술 전과 술 후 임플란트 거리와 각도 변위량이 기록되었으며 평균 및 최대 변위값을 산출하였다. 술 전과 술 후 임플란트 위치 간 거리의 변위량은 평균 0.41 mm였고 최대 1.7 mm의 범위 하에 있었다. 술 전과 술 후 임플란트 간 위치의 각도의 변위량은 평균 $1.99^{\circ}$를 나타냈으며 최대 각도 변위량은 $6.7^{\circ}$를 나타내었다. 술 전 계획된 임플란트와 술 후 식립된 임플란트 간의 길이와 각도에 따른 평균 변위량은 computer-guided implant system을 실제 임상에 적용하는 데 있어 큰 문제가 존재하지 않고 '수동적 적합(passive fit)'을 얻기에 무리가 없을 허용 가능할 만한 값을 나타냈다.

With a development of implant restoration technique, there are increasing use of computer-guided system for edentulous patients. It was carried out simulated operation based on CT information about patient's bone quantity, quality and anatomical landmark. However, there are some difference between the programmed implant and post-operative implant about it's position. If the deviation was severe, it could happen a failure of 'passive fit' and not suited for path of implant restoration. The aim of this presentation is to evaluate about a degree of deviations between programmed implant and post-operative implant. Five patients treated by 'NobelGuide' system (Nobel Biocare AB, G$\ddot{o}$teborg, Sweden) in Department of Prosthodontics, Inha University were included in this study. The patients were performed CT radiograph taking and intra-oral impression taking at pre-operation. Based on CT images and study model, surgical stent was produced by NobelBiocareTM. To fabricated a pre-operative study model, after connected lab analog to surgical template, accomplished a pre-operative model using type 4 dental stone. At final impression, a post-operative study model was fabricated in the conventional procedures. Each study model was performed CT radiograph taking. Based on CT images, each implant was simulated in three dimensional position using $Procera^{(R)}$ software (Procera Software Clinical Design Premium, version 1.5; Nobel Biocare AB). In 3D simulated model, length and angulation between each implant of both pre- and post-operative implants were measured and recorded about linear and angular deviation between pre-and post-operative implants. A total of 24 implants were included in this study and 58 inter-implant sites between each implant were measured about linear and angular deviations. In the linear deviation a mean deviation of 0.41 mm (range 0~1.7 mm) was reported. In the angular deviation, a mean deviation was $1.99^{\circ}$ (range $0^{\circ}{\sim}6.7^{\circ}$). It appears that the both linear and angular mean deviation value were well acceptable to application of computer-guided implant system.

키워드

참고문헌

  1. Vinicius NV, Vinicius D, Rogerio MP, Marilia GO. Transference of virtual planning and planning over biomedical prototypes for dental implant placement using guided surgery. Clinical Oral Implants Research 2010; 21: 290-295 https://doi.org/10.1111/j.1600-0501.2009.01833.x
  2. Fortin T, Champleboux G, Bianchi S, Buatois H, Coudert JL. Precison of transfer of preoperative planning for oral implants based on cone-beam CT-scan image through a robotic drilling machine. Clinical Oral Implants Research 2002; 13(6): 651-6 https://doi.org/10.1034/j.1600-0501.2002.130612.x
  3. Van Steenberghe D, Glauser R, Blomback U, Andersson M, Schutyser F, Petterson A, Wendelhag I. A computed tomographic scan-derived customized surgical template and fixed prosthesis for flapless surgery and immediate loading of implants in fully edentulous maxillae: a prospective multicenter study. Clinical Implant Dentistry @ Related Research 2005; 7(Suppl.): S111-S120 https://doi.org/10.1111/j.1708-8208.2005.tb00083.x
  4. Sanna AM, Molly L, van Steenberghe D. Immediately loaded cad-cam manufactured fixed complete dentures using flapless implant placement procedures: a cohort study of consecutive patients. Journal of Prosthetic Dentistry 2007;97: 31-39
  5. Komiyama A, Klinge B, Hultin M. Treatment outcome of immediately loaded implants installed in edentulous jaws following computer-assisted virtual treatment planning and flapless surgery. Clinical Oral Implants Research 2008; 19: 677-685 https://doi.org/10.1111/j.1600-0501.2008.01538.x
  6. Humphries RM, Yaman P, Bleom TJ. The accuracy of implant master casts constructed from transfer impressions. Int J Oral Maxillofac Implants 1990; 5: 331-336
  7. Rangert B, Jemt T, Jorneus L. Forces and movements on Brånemark implants. Int J Oral Maxillofac Implants 1990; 4: 241-247
  8. Branemark PI, Zarb GA, Albrektsson T. Tissue- Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago, Quintessence Publ Co 1985; 117-128
  9. Branemark PI, Zarb GA, Albreksson T. Tissue- integrated prostheses. Quintessence publish Company 1990; 233-240
  10. Sones AD. Complications with osseointegrated implants. J Prosthet Dent 1989; 62: 581-585 https://doi.org/10.1016/0022-3913(89)90084-X
  11. Van Assche N, van Steenberghe D, Guerrero ME, Hirsch E, Schutyser F, Quirynen M, Jacobs R. Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images: a pilot study. Journal of Clinical Periodontology 2007; 34: 816-821 https://doi.org/10.1111/j.1600-051X.2007.01110.x
  12. Schneider D, Marquardt P, Zwahlen M, Jung RE. A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clinical Oral Implants Research. 2009; 20 Suppl 4: 73-86 https://doi.org/10.1111/j.1600-0501.2009.01788.x
  13. Di Giacomo GA., Cury PR, De Araujo NS, Sendyk WR, Sendyk CL. Clinical application of stereolithographic surgical guides for implant placement: preliminary results, Journal of Periodontology 2005; 76: 503-507 https://doi.org/10.1902/jop.2005.76.4.503