DOI QR코드

DOI QR Code

Magnetic Properties of Cr Substituted SiTe Compounds

SiTe에 Cr을 치환한 화합물의 자기적 성질

  • ;
  • ;
  • 이재일 (인하대학교 물리학과)
  • Received : 2011.06.02
  • Accepted : 2011.08.16
  • Published : 2011.08.31

Abstract

In this paper, we study the electronic and magnetic properties of Cr substituted SiTe in the rock-salt structure compound using the full potential linearized augmented plane wave method within the generalized gradient approximation to the exchange correlation potential. Two stoichiometries are studied: $CrSi_3Te_4$ with 25 %, and $CrSiTe_2$ with 50 % Cr substitution. We found, from the total energy calculations, that the equilibrium lattice constant for cubic $CrSi_3Te_4$ is 11.64 a.u. and a = 7.89 a.u. and c = 11.13 a.u. for tetragonal $CrSiTe_2$. The integer value of the calculated magnetic moment per unit cell, $4{\mu}_B$ for $CrSiTe_2$ suggests that this compound is halfmetallic. The magnetic moment per unit cell for $CrSi_3Te_4$ is slightly larger than $4{\mu}_B$. The magnetic moment on Cr atoms are 3.61 and $3.62{\mu}_B$ in the $CrSi_3Te_4$ and $CrSiTe_2$, respectively. The presence of Cr atoms causes that the other atoms become slightly magnetized in both compounds. The electronic properties and the magnetism are discussed with the calculated spin-polarized density of states.

암염구조를 가진 SiTe에서 일부 Si를 Cr로 치환한 화합물에 대한 전자구조와 자성을 교환상관퍼텔셜에 일반기울기 근사를 쓴 full potential linearized augmented plane wave 에너지 띠 계산방법을 이용하여 연구하였다. Si 대신 25 %의 Cr을 치환한 $CrSi_3Te_4$ 및 50 %를 치환한 $CrSiTe_2$를 고려하였다. 총에너지 계산으로 $CrSi_3Te_4$는 11.64 a.u, $CrSiTe_2$는 a = 7.89 a.u., c = 11.13 a.u.의 평형격자상수를 가짐을 알았다. $CrSiTe_2$는 단위부피당 정수인 $4{\mu}_B$의 자기모멘트를 가지는 반쪽금속성을 나타냈으며, $CrSi_3Te_4$는 단위부피당 자기모멘트가 $4{\mu}_B$보다 미세하게 컸다. 두 화합물 모두에서 치환되어 들어간 Cr은 $3.6{\mu}_B$ 정도의 자기모멘트를 가졌으며, Si나 Te는 약하게 자기화되었다. 계산된 스핀분극 상태밀도를 이용하여 이 두 화합물의 자성을 논의하였다.

Keywords

References

  1. Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science 295, 651 (2002). https://doi.org/10.1126/science.1066348
  2. S. Cho, S. Choi, S. C. Hong, Y. Kim, J. B. Ketterson, B. J. Kim, Y. C. Kim, and J. H. Jung, Phys. Rev. B 66, 033303 (2002). https://doi.org/10.1103/PhysRevB.66.033303
  3. A. Punnoose, K. M. Reddy, J. Hays, A. Thurber, and M. H. Engelhard, Appl. Phys. Lett. 89, 112509 (2006). https://doi.org/10.1063/1.2349284
  4. S. A. Chambers, Mater. Today 5, 34 (2002).
  5. D. Chiba, M. Yamanouchi, F. Matsukara, and H. Ohno, Science 301, 943 (2003). https://doi.org/10.1126/science.1086608
  6. V. I. Litvinov and V. K. Dugaev, Phys. Rev. Lett. 86, 5593 (2001). https://doi.org/10.1103/PhysRevLett.86.5593
  7. X. Luo and R. M. Martin, Phys. Rev. B 72, 035212 (2005). https://doi.org/10.1103/PhysRevB.72.035212
  8. M. V. Schilfgaarde and O. N. Mryasov, Phys. Rev. B 63, 233205 (2001). https://doi.org/10.1103/PhysRevB.63.233205
  9. H. Saito, V. Zayets, S. Yamagata, and K. Ando, Phys. Rev. Lett. 90, 207202 (2003). https://doi.org/10.1103/PhysRevLett.90.207202
  10. M. J. Seong, H. Alawadhi, I. Miotkowski, A. K. Ramdas, and S. Miotkowska, Phys. Rev. B 63, 125208 (2001). https://doi.org/10.1103/PhysRevB.63.125208
  11. S. Jun Hu, S. Shen Yan, M. Wen Zhao, and L. Mo Mei, Phys. Rev. B 73, 24520 (2006).
  12. R. D. McNorton, T. M. Schuler, J. M. MacLaren, and R. A. Stern, Phys. Rev. B 78, 075209 (2008). https://doi.org/10.1103/PhysRevB.78.075209
  13. S. A. Chambers and B. Gallagher, New J. Phys. 10, 055004 (2008). https://doi.org/10.1088/1367-2630/10/5/055004
  14. T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006). https://doi.org/10.1103/RevModPhys.78.809
  15. I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004). https://doi.org/10.1103/RevModPhys.76.323
  16. M. Yamada, K. Ono, M. Mizuguchi, J. Okabayashi, M. Oshima, M. Yuri, H. J. Lin, H. H. Hsieh, and C. T. Chen, H. Akinaga, J. Appl. Phys. 91, 7908 (2002). https://doi.org/10.1063/1.1455611
  17. H. Saito, W. Zaets, S. Yamagata, Y. Suzuki, and K. Ando, J. Appl. Phys. 91, 8085 (2002). https://doi.org/10.1063/1.1452649
  18. Y. Fukuma, H. Asada, J. Miyashita, N. Nishimura, and T. Koyanagi, J. Appl. Phys. 93, 7667 (2003). https://doi.org/10.1063/1.1556113
  19. Y. H. Zhao, W. H. Xie, L. F. Zhu, and B. G. Liu, J. Phys.: Condens. Matter 18, 10259 (2006). https://doi.org/10.1088/0953-8984/18/45/012
  20. E. Wimmer, H. Krakauker, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981) https://doi.org/10.1103/PhysRevB.24.864
  21. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982). https://doi.org/10.1103/PhysRevB.26.4571
  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  23. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  24. M. Weinert, G. Schneider, R. Podloucky, and J. Redinger, J. Phys.: Condens. Matter 21, 084201 (2009). https://doi.org/10.1088/0953-8984/21/8/084201