Browse > Article
http://dx.doi.org/10.4283/JKMS.2011.21.4.127

Magnetic Properties of Cr Substituted SiTe Compounds  

Landge, Kalpana (Deperatment of Physics, Inha University)
Bialek, Beata (Deperatment of Physics, Inha University)
Lee, Jae-Il (Deperatment of Physics, Inha University)
Abstract
In this paper, we study the electronic and magnetic properties of Cr substituted SiTe in the rock-salt structure compound using the full potential linearized augmented plane wave method within the generalized gradient approximation to the exchange correlation potential. Two stoichiometries are studied: $CrSi_3Te_4$ with 25 %, and $CrSiTe_2$ with 50 % Cr substitution. We found, from the total energy calculations, that the equilibrium lattice constant for cubic $CrSi_3Te_4$ is 11.64 a.u. and a = 7.89 a.u. and c = 11.13 a.u. for tetragonal $CrSiTe_2$. The integer value of the calculated magnetic moment per unit cell, $4{\mu}_B$ for $CrSiTe_2$ suggests that this compound is halfmetallic. The magnetic moment per unit cell for $CrSi_3Te_4$ is slightly larger than $4{\mu}_B$. The magnetic moment on Cr atoms are 3.61 and $3.62{\mu}_B$ in the $CrSi_3Te_4$ and $CrSiTe_2$, respectively. The presence of Cr atoms causes that the other atoms become slightly magnetized in both compounds. The electronic properties and the magnetism are discussed with the calculated spin-polarized density of states.
Keywords
DMS; magnetic properties; magnetic moment; $CrSi_3Te_4$; $CrSiTe_2$; spin polarization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. H. Zhao, W. H. Xie, L. F. Zhu, and B. G. Liu, J. Phys.: Condens. Matter 18, 10259 (2006).   DOI   ScienceOn
2 E. Wimmer, H. Krakauker, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981)   DOI
3 M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982).   DOI
4 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI   ScienceOn
5 W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).   DOI
6 M. Weinert, G. Schneider, R. Podloucky, and J. Redinger, J. Phys.: Condens. Matter 21, 084201 (2009).   DOI   ScienceOn
7 Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science 295, 651 (2002).   DOI   ScienceOn
8 S. Cho, S. Choi, S. C. Hong, Y. Kim, J. B. Ketterson, B. J. Kim, Y. C. Kim, and J. H. Jung, Phys. Rev. B 66, 033303 (2002).   DOI   ScienceOn
9 A. Punnoose, K. M. Reddy, J. Hays, A. Thurber, and M. H. Engelhard, Appl. Phys. Lett. 89, 112509 (2006).   DOI   ScienceOn
10 S. A. Chambers, Mater. Today 5, 34 (2002).
11 D. Chiba, M. Yamanouchi, F. Matsukara, and H. Ohno, Science 301, 943 (2003).   DOI
12 V. I. Litvinov and V. K. Dugaev, Phys. Rev. Lett. 86, 5593 (2001).   DOI   ScienceOn
13 X. Luo and R. M. Martin, Phys. Rev. B 72, 035212 (2005).   DOI   ScienceOn
14 M. V. Schilfgaarde and O. N. Mryasov, Phys. Rev. B 63, 233205 (2001).   DOI   ScienceOn
15 H. Saito, V. Zayets, S. Yamagata, and K. Ando, Phys. Rev. Lett. 90, 207202 (2003).   DOI   ScienceOn
16 M. J. Seong, H. Alawadhi, I. Miotkowski, A. K. Ramdas, and S. Miotkowska, Phys. Rev. B 63, 125208 (2001).   DOI   ScienceOn
17 S. Jun Hu, S. Shen Yan, M. Wen Zhao, and L. Mo Mei, Phys. Rev. B 73, 24520 (2006).
18 R. D. McNorton, T. M. Schuler, J. M. MacLaren, and R. A. Stern, Phys. Rev. B 78, 075209 (2008).   DOI   ScienceOn
19 S. A. Chambers and B. Gallagher, New J. Phys. 10, 055004 (2008).   DOI   ScienceOn
20 T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).   DOI   ScienceOn
21 I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).   DOI   ScienceOn
22 M. Yamada, K. Ono, M. Mizuguchi, J. Okabayashi, M. Oshima, M. Yuri, H. J. Lin, H. H. Hsieh, and C. T. Chen, H. Akinaga, J. Appl. Phys. 91, 7908 (2002).   DOI   ScienceOn
23 H. Saito, W. Zaets, S. Yamagata, Y. Suzuki, and K. Ando, J. Appl. Phys. 91, 8085 (2002).   DOI   ScienceOn
24 Y. Fukuma, H. Asada, J. Miyashita, N. Nishimura, and T. Koyanagi, J. Appl. Phys. 93, 7667 (2003).   DOI   ScienceOn