급경사지 붕괴 예측을 위한 모형 개발

Development of model for prediction of land sliding at steep slopes

  • 박기병 (동국대학교 통계학과, 대학원) ;
  • 주용성 (동국대학교 통계학과) ;
  • 박덕근 (소방방재청 방재연구소 지반방재팀)
  • Park, Ki-Byung (Department of statistics, Dongguk University) ;
  • Joo, Yong-Sung (Department of statistics, Dongguk University) ;
  • Park, Dug-Keun (Geotechnical disaster prevention team, National Institute of Disaster Prevention)
  • 투고 : 2011.04.16
  • 심사 : 2011.06.17
  • 발행 : 2011.08.01

초록

현재까지 우리나라뿐만 아니라 세계적으로 급경사지 붕괴는 대표적인 자연재해로 알려져 있다. 급경사지 붕괴 피해를 방지하기 위해 행해진 많은 선행 연구를 바탕으로 일부 국내기관에서는 급경사지 평가표를 만들어 붕괴 예측에 활용하고 있다. 하지만, 대부분의 기존 연구는 비통계전문가들에 의해 행해졌기 때문에 평가표 구성의 통계적 타당성을 제시하지 못했다. 본 연구는 전국 지역을 대상으로 급경사지 (암반사면, 토사사면) 붕괴에 영향을 미칠 것으로 예상되는 인자들의 자료를 수집하고 그 인자들의 가중치를 판정하기 위하여 로지스틱 회귀분석 방법을 사용하였다. 선행연구들 중에 로지스틱 회귀분석을 이용한 기존의 연구들이 있었지만 다중공선성을 전혀 고려하지 않았기 때문에 결과가 신뢰할 만하지 못하다. 본 연구에서는 다중공선성을 제거된 급경사지 붕괴 예측모형을 제시하였다.

Land sliding is one of well-known nature disaster. As a part of effort to reduce damage from land sliding, many researchers worked on increasing prediction ability. However, because previous studies are conducted mostly by non-statisticians, previously proposed models were hardly statistically justifiable. In this paper, we predicted the probability of land sliding using the logistic regression model. Since most explanatory variables under consideration were correlated, we proposed the final model after backward elimination process.

키워드

참고문헌

  1. 이혜정, 조수현, 김재희 (2009). 한우 수소 고기 관능평가 데이터에 대한 범주형 자료 분석. <한국데이터정보과학회지>, 20, 819-827.
  2. 조용찬, 채병곤, 김원영, 장태우 (2007). 화강암질암지역 토석류 산사태 예측을 위한 로지스틱 회귀모델의 수정 및적용. <자원환경지질>, 40, 115-128.
  3. 조장식. (2010). 회귀분석에 기초한 균둥화 방법에 관한 연구. <한국데이터정보과학회지>, 21, 513-521.
  4. 채병곤, 김원영, 조용찬, 김경수, 이춘오, 최영섭 (2004a). 토석류 산사태 예측을 위한 로지스틱 회귀모형 개발.<지질공학>, 14, 211-222.
  5. 채병곤, 김원영, 나종화, 조용찬, 김경수, 이춘오 (2004b). 제3기 퇴적암 및 화산암 분포지의 산사태 예측모델.<지질공학>, 14, 443-450.
  6. 채병곤, 조용찬, 송영석, 서용석 (2009). AIP분석기법을 이용한 급경사지재해 취약성 평가표 개발. <지질공학>,19, 99-108.
  7. Hong, C. S. and Choi, J. M. (2008). Validation comparison of credit rating models using Box-Cox transformation. Journal of the Korean Data & Information Science Society, 19, 789-800.
  8. Kahng, M. W. (2011). A study on log-density ratio in logistic regression model for binary data. Journal of the Korean Data & Information Science Society, 22, 107-113.
  9. Kutner, M. H., Nachtsheim, C. J., Neter J. and Li, W. (2005). Applied linear statistical models, fifth Ed, Mcgraw-hill, USA.
  10. Lee, S., Ryu, J. H. and Kim, I. S. (2007). Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea. Landslides, 4, 327-338. https://doi.org/10.1007/s10346-007-0088-x
  11. Ohlmacher, G. C. and Davis J. C. (2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69, 331-343. https://doi.org/10.1016/S0013-7952(03)00069-3
  12. Pradhan, B. and Youssef, A. M. (2009). Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arabian Journal of Geosciences, 3, 319-326.