DOI QR코드

DOI QR Code

고온 열분해 환경의 다공성 탄소/페놀릭 복합재의 열기계적 거동

Thermomechanical Behavior of Porous Carbon/Phenolic Composites in Pyrolysis Environments

  • 김성준 (전북대학교 대학원 항공우주공학과) ;
  • 한수연 (전북대학교 대학원 항공우주공학과) ;
  • 신의섭 (전북대학교 항공우주공학과)
  • 투고 : 2011.05.20
  • 심사 : 2011.07.13
  • 발행 : 2011.08.01

초록

본 논문에서는 열화학적 분해 및 열기계학적 변형이 고려된 구성 방정식을 사용하여 다공성 탄소/페놀릭 복합재료의 열탄성 거동을 예측하였다. 다공성 복합재료의 온도 의존성 및 열화학적 분해 과정에서의 기공도, 분해 가스에 의한 기공 압력, 재료의 수축을 고려하였다. 기공도와 기공 압력이 고려된 대표 체적 요소 모델의 유한요소 해석을 통해 산출된 거시적 기공 탄성 계수를 구성 방정식에 적용하였다. 간단한 수치 실험을 통해 기공탄성 계수가 다공성 재료의 열탄성 거동에 미치는 영향을 분석하였으며, 재료 내부에 형성된 기공과 기공 압력에 의한 응력 구배 및 변형을 확인하였다.

The thermoelastic behavior of the porous carbon/phenolic composites is studied using the thermomechanical response model of chemically decomposing composites. The model includes thermal dependence of the porous composites, porosity in the pyrolysis process, pore pressure due to decomposing gases, and shrinkage. The poroelastic coefficients are calculated based on representative volume element model and finite element analysis. The internal stress distribution caused by pores and pore pressure, and the overall deformation are verified. The effects of the poroelastic coefficients on the thermoelastic behavior are examined through numerical experiments.

키워드

참고문헌

  1. Mcmanus, H. L. N. and Springer, G. S., "High Temperature Thermomechanical Behavior of Carbon-Phenolic and Carbon-Carbon Composites, I. Analysis", Journal of Composite Materials, Vol. 26, No. 2, 1992, pp. 206-229. https://doi.org/10.1177/002199839202600204
  2. Potts, R. L., "Application of Integral Methods to Ablation Charring Erosion, A Review", Journal of Spacecraft and Rockets, Vol. 32, No. 2, 1995, pp. 200-209. https://doi.org/10.2514/3.26597
  3. Bahramian, A. R., Kokabi, M., Famili, M. H. N., and Beheshty, M. H., "Ablation and Thermal Degradation Behaviour of a Composite Based on Resol Type Phenolic Resin: Process Modeling and Experimental", Polymer, Vol. 47, No. 10, 2006, pp. 3661-3673. https://doi.org/10.1016/j.polymer.2006.03.049
  4. Chen, Y. K and Milos, F. S., "Two-Dimensional Implicit Thermal Response and Ablation Program for Charring Materials on Hypersonic Space Vehicles", AIAA 2000-0206.
  5. Henderson, J. B. and Wiecek, T. E, "A Mathematical Model to Predict the Thermal Response of Decomposing, Expanding Polymer Composites", Journal of Composite Materials, Vol. 21, No. 4, 1987, pp. 373-393. https://doi.org/10.1177/002199838702100406
  6. Lee, S., Salamon, N. J., and Sullivan, R. M., "Finite Element Analysis of Poroelastic Composites Undergoing Thermal and Gas Diffusion", Journal of Thermophysics and Heat Transfer, Vol. 10, No. 4, 1996, pp. 672-680. https://doi.org/10.2514/3.844
  7. Wu, Y. and Katsube, N., "A Constitutive Model for Thermomechanical Response of Decomposing Composites under High Heating Rates", Mechanics of Materials, Vol. 22, 1996, pp. 189-201. https://doi.org/10.1016/0167-6636(95)00041-0
  8. Sullivan, R. M. and Salamon, N. J., "A Finite Element Method for the Thermochemical Decomposition of Polymeric Materials - II. Carbon-Phenolic Composites", International Journal of Engineering Science, Vol. 30, No. 7, 1992, pp. 939-951. https://doi.org/10.1016/0020-7225(92)90021-8
  9. Koo, J. H., Ho, D. W. K., Bruns, M. C., and Ezekoye, O. A., "A Review of Numerical and Experimental Characterization of Thermal Protection Materials - Properties Characterization", AIAA 2007-2131.
  10. Stokes, E. H., "The effect of Moisture on the Mechanical and Thermal Response of FM5055 Carbon Phenolic Composites", Southern Research Institute Report, No. SRI-EAS-87-1244-6245-6, 1987.