References
- C. Brezinski, Other manifestations of the schur complement, Linear Algebra Appl. 111 (1988), 231-247. https://doi.org/10.1016/0024-3795(88)90062-6
- C. Brezinski, M. Redivo Zaglia, and H. Sadok, A Breakdown-free Lanczos type algorithm for solving linear systems, Numer. Math. 63 (1992), no. 1, 29-38. https://doi.org/10.1007/BF01385846
- V. N. Faddeeva, Computational Methods of Linear Algebra, Dover Publications, Inc., New York, USA, 1959.
- H. J. Kim, Kyung Choi, H. B. Lee, H. K. Jung, and S. Y. Hahn, A new algorithm for solving ill-conditioned linear system, IEEE Transactions on Magnetics 32 (1996), no. 3, 1373-1376. https://doi.org/10.1109/20.497502
- J. R. Rice, Matrix Computations and Mathematical Software, McGraw-Hill, New York, 1981.
- F. Zhang and Roger A. Horn, Basic Properties of the Schur Complement, In F. Zhang, editor, The Schur Complement and its applications, pages 17-46. Springer, New York, 2005.
Cited by
- Reference satellite selection method for GNSS high-precision relative positioning vol.8, pp.2, 2017, https://doi.org/10.1016/j.geog.2016.07.007
- A two-step monolithic method for the efficient simulation of incompressible flows vol.74, pp.12, 2014, https://doi.org/10.1002/fld.3881
- Application of high-order Levenberg–Marquardt method for solving the power flow problem in the ill-conditioned systems vol.10, pp.12, 2016, https://doi.org/10.1049/iet-gtd.2016.0064