DOI QR코드

DOI QR Code

A Study on Added Filters for Reduction of Radiation Exposure Dose in Skull A-P Projection

머리부 전후방향촬영 시 방사선피폭선량 저감을 위한 부가여과판에 대한 연구

  • Lee, Cho-Hee (Department of Radiological Science, Konyang University) ;
  • Lim, Chang-Seon (Department of Radiological Science, Konyang University)
  • 이초희 (건양대학교 방사선학과) ;
  • 임창선 (건양대학교 방사선학과)
  • Received : 2011.05.16
  • Accepted : 2011.07.07
  • Published : 2011.07.31

Abstract

Skull A-P projections are the bi-product where the ESD (Entrance Surface Dose) for digital radiography is much higher than that conventional screen-film radiography. Therefore, the aim of this study was to reduce radiation doses to patients by using an added filter. This research focuses on the identification of the reduction of exposure to radiation based on the thickness of an added filter when applying the 'Skull A-P Projection' by using the 'Skull Phantom'. Also, an experiment was conducted to evaluate the qualitative decline of images through filtration. The measurement of one's exposed dose to radiation was executed by locating the 'Skull Phantom' on the position of the 'Skull AP,' while changing 16 kinds of added filters from 0.1 mmAl to 0.5 mmCu + 2.0 mmAl in terms of incident and penetrating doses. For the qualitative evaluation of images, a total number of 17 images have been acquired in the 'Skull Phantom' under the same conditions as those for the measurement of one's exposed dose. The acquired images have been evaluated by a radiological specialist. As a result, the images with a diagnostic value have been obtained by using such added filters as the compound filter of 0.2 mmCu +1.0 mmAl. The exposed dose absorbed on the 'Skull Phantom' is about 0.6 mGy. The value is only 12% of 5 mGy, the ESD value acquired on the 'Skull P-A Projection', which is recommended by the International Atomic Energy Agency (IAEA). As a result, depending on the parts of inspection, it is possible to reduce the patient's exposed dosage of radiation considerably by using an appropriate added filter.

머리부 전후방향촬영은 종래의 증감지-필름 방사선촬영보다 디지털방사선촬영 시 입사표면선량(ESD)이 훨씬 높다. 따라서 본 연구의 목적은 부가필터를 사용하여 환자의 피폭선량을 줄이기 위한 것이다. 본 연구에서는 머리부 팬톰을 이용하여 머리부 전후방향촬영 시 부가여과판의 두께에 따른 선량 감소효과를 알아보았고, 동시에 부가여과판 사용에 따른 영상의 질적 저하의 평가를 위한 실험을 진행하였다. 선량측정은 머리부 팬톰을 머리부 전후방향촬영자 세로 위치시켜 입사표면선량과 투과선량을 0.1 mmAl으로부터 0.5 mmCu+2.0 mmAl까지 16종류의 부가여과판을 바꾸어 가며 측정하였다. 영상의 화질 평가를 위해서 총 17매의 영상을 촬영하였고 촬영된 영상은 영상의학과 전문의에게 평가를 의뢰하였다. 그 결과 부가여과판 중 0.2 mmCu+1.0 mmAl의 복합여과판을 사용한 부가여과판까지 진단적 가치가 있는 영상을 얻었고, 이 때 머리부 팬톰에 입사표면선량은 약 0.6 mGy이었다. 이 값은 국제원자력기구(IAEA)에서 권고하고 있는 머리부 후전방향촬영 시 입사표면선량 5 mGy의 12%에 불과하였다. 따라서 검사부위에 따라 적정한 부가여과판의 사용으로 환자의 피폭선량을 상당히 감소시키는 효과를 얻을 수 있다.

Keywords

References

  1. B. S. Kang and C. S. Lim, "A Study on the Environmental Radiation Dose Measurement in the Nuclear Medicine Department ", Journal of the Korea Academia-Industrial cooperation Society, Vol.11, No.6, pp.2118-2123, June, 2010. https://doi.org/10.5762/KAIS.2010.11.6.2118
  2. Y. H. Kim, " Method for Measurement of Entrance Surface Dose and Role of Radiation technologist", Journal of Radiological Science and Technology, Vol.28, No.3, pp.173-191, September, 2005.
  3. Y. H. Kim et al, "Patient exposure doses from medical X-ray examninations in Korea", Journal of Radiological Science and Technology, Vol.28, No.3, pp. 241-248, September, 2005.
  4. J. M. Kim and S. C. Kim, "The thickness of Cu Filter to reduce 1/2 of the patient dose", Journal of Korean Society of Radiolotical Technology, Vol.24, No.1, pp.17-22, June, 2001.
  5. K. M. Choi et al. "The Reduction of Radiation Dose Using Key-Filter in Chest Radiography", Journal of Korean Society of Radiological Technology, Vol.19, No.2, pp.67-70, December, 1996.
  6. B. S. Lim, "Radiation Exposure Dose on Persons Engaged in Radiation-related Industries in Korea", Journal of Radiological Science and Technology, Vol.29, No.3, pp.185-195, September, 2006.
  7. C. S. Lim and S. H. Kim, "A Study on the Radiation Dose Managements in the Nuclear Medicine Department", Journal of the Korea Academia-Industrial cooperation Society, Vol.10, No.7, pp.1760-1765, July, 2009. https://doi.org/10.5762/KAIS.2009.10.7.1760
  8. W. K. Choi et al. "Shielding Effect according to the Direction of Control Room Door Opening during Radiography", Journal of the Korea Academia-Industrial cooperation Society, Vol.11, No.9, pp.3347-3352, September, 2010. https://doi.org/10.5762/KAIS.2010.11.9.3347
  9. ICRP, 1990 Recommendations of the International Commission on Radiological Protection , Publication 60, Annals of the ICRP Vol.21, No. 1-3, Pergomon Press, Oxford, 1991.
  10. National Institude of Food and Drug Safety Evaluation, "Technical Information for Skull X-ray radiography", pp.1-47, December, 2010.
  11. IAEA, International basic safety standards for protection against inoizing radiation and the safety of radiation sources, IAEA Safety Series No.115, Vienna, pp.279-280, 1996.
  12. G. H. Jo et al, "A Study on the Exposure Parameter and the Patient Dose for Digital Radiography System in Dae Goo", Journal of Radiological Science and Technology, Vol.31, No.2, pp.177-182, June, 2008.
  13. I. J. Lee, "Evaluation of Image According to Exposure Conditions using Contrast-Detail Phantom for Chest Digital Radiography", Journal of Radiological Science and Technology, Vol.32, No.1, pp.25-31, March, 2009.
  14. G Compagnone, et al., "Comparison of radiation doses to patients undergoing standard radiographic examinations with conventional screen-film radiography, computed radiography and direct digital radiography", British Journal of Radiology, Vol.79, pp.899-904, 2006. https://doi.org/10.1259/bjr/57138583
  15. A. Aroua et al., "Adult reference levels in diagnostic and interventional radiology for temporary use in switzerland", Radiation Protection Dosimetry, Vol.111, No.3, pp.289-295, 2004. https://doi.org/10.1093/rpd/nch343

Cited by

  1. A Analysis of Effectiveness of Aluminium Filter in the added Compound Filtration by Detective Quantum Efficiency and Image Quality Evaluation vol.15, pp.10, 2015, https://doi.org/10.5392/JKCA.2015.15.10.362
  2. A study of beam hardening effect reduction occur in brain CT vol.16, pp.12, 2015, https://doi.org/10.5762/KAIS.2015.16.12.8479