• Title/Summary/Keyword: Reduction of exposure to radiation

Search Result 224, Processing Time 0.028 seconds

Reduction of Radiation Exposure by Modifying Imaging Manner and Fluoroscopic Settings during Percutaneous Pedicle Screw Insertion

  • Kim, Hyun Jun;Park, Eun Soo;Lee, Sang Ho;Park, Chan Hong;Chung, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.933-943
    • /
    • 2021
  • Objective : Percutaneous pedicle screw (PPS) fixation is a needle based procedure that requires fluoroscopic image guidance. Consequently, radiation exposure is inevitable for patients, surgeons, and operation room staff. We hypothesize that reducing the production of radiation emission will result in reduced radiation exposure for everyone in the operation room. Research was performed to evaluate reduction of radiation exposure by modifying imaging manner and mode of radiation source. Methods : A total of 170 patients (680 screws) who underwent fusion surgery with PPS fixation from September 2019 to March 2020 were analyzed in this study. Personal dosimeters (Polimaster Ltd.) were worn at the collar outside a lead apron to measure radiation exposure. Patients were assigned to four groups based on imaging manner of fluoroscopy and radiation modification (pulse mode with reduced dose) : continuous use without radiation modification (group 1, n=34), intermittent use without radiation modification (group 2, n=54), continuous use with radiation modification (group 3, n=26), and intermittent use with radiation modification (group 4, n=56). Post hoc Tukey Honest significant difference test was used for individual comparisons of radiation exposure/screw and fluoroscopic time/screw. Results : The average radiation exposure/screw was 71.45±45.75 µSv/screw for group 1, 18.77±11.51 µSv/screw for group 2, 19.58±7.00 µSv/screw for group 3, and 4.26±2.89 µSv/screw for group 4. By changing imaging manner from continuous multiple shot to intermittent single shot, 73.7% radiation reduction was achieved in the no radiation modification groups (groups 1, 2), and 78.2% radiation reduction was achieved in the radiation modification groups (groups 3, 4). Radiation source modification from continuous mode with standard dose to pulse mode with reduced dose resulted in 72.6% radiation reduction in continuous imaging groups (groups 1, 3) and 77.3% radiation reduction in intermittent imaging groups (groups 2, 4). The average radiation exposure/screw was reduced 94.1% by changing imaging manner and modifying radiation source from continuous imaging with standard fluoroscopy setting (group 1) to intermittent imaging with modified fluoroscopy setting (group 4). A total of 680 screws were reviewed postoperatively, and 99.3% (675) were evaluated as pedicle breach grade 0 (<2 mm). Conclusion : The average radiation exposure/screw for a spinal surgeon can be reduced 94.1% by changing imaging manner and modifying radiation source from real-time imaging with standard dose to intermittent imaging with modified dose. These modifications can be instantly applied to any procedure using fluoroscopic guidance and may reduce the overall radiation exposure of spine surgeons.

The Efficacy of Fluorograb for Paediatric Patients Dose Reduction during Pneumatic Reduction and Voiding Cystourethrography(VCUG) (영.유아의 배뇨성 방광-요도 조영술 및 방사선 공기 주입 정복술시 피폭선량 경감을 위한 fluorograb의 유용성)

  • Kim, Sang-Tae;Choi, Ji-Won
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.385-390
    • /
    • 2009
  • The Pneumatic Reduction and VCUG (Voiding Cystourethrography) are commonly used in the paediatric age group. The procedures had a particularly long fluroscopic screening time, despite a successful outcome for paediatric patients. Pneumatic Reduction and VCUG almost invariably requires fluoroscopic guidance which does confer a radiation dose. This article contains suggestions on how the radiation dose to paediatric patients from Pneumatic Reduction and VCUG can be made "as low as reasonably achievable" (ALARA). The aim of our study was eliminated in spot image applying the FluoroGrab, which has function of capturing an image of interest area from the picturing while fluoroscopic procedures. FluoroGrab has clinical value equivalent to the spot image, and is applied to the most recent fluoroscopic procedures. The radiologist and the radiographers should consider new option for decreasing the radiation exposure delivered to paediatric patients by making equipment modifications to the fluoroscopy to optimize radiation exposure reduction techniques. Thus, we propose the FluoroGrab instead of spot exposure for the reduction of patient exposure dose in paediatric, and try to confirm the effect of the mitigating amount of radiation exposure to paediatric patients when pneumatic reduction and VCUG. Fluorograb is the safe and useful method that shows the equivalent level of accuracy to spot exposure, and to minimize the radiation load to paediatric patients are to be the substitute for the spot exposure for Pneumatic Reduction and VCUG.

The Efficacy of Fluorograb for Paediatric Patients Dose Reduction during Pneumatic Reduction and Voiding Cystourethrography (VCUG) (영아/유아의 공기 주입 정복술 및 방사선 배뇨성 방광요도 조영술시 피폭 선량 경감을 위한 FluroGrab의 유용성)

  • Kim, Sang-Tae;Choi, Ji Won;Han, Tae-Jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1167-1172
    • /
    • 2009
  • The Pneumatic Reduction and VCUG (Voiding Cystourethrography) are commonly used in the paediatric age group. The procedures had a particularly long fluroscopic screening time, despite a successful outcome for paediatric patients. Pneumatic Reduction and VCUG almost invariably requires fluoroscopic guidance which does confer a radiation dose. This article contains suggestions on how the radiation dose to paediatric patients from Pneumatic Reduction and VCUG can be made "as low as reasonably achievable" (ALARA). The aim of our study was eliminated in spot image applying the FluoroGrab, which has function of capturing an image of interest area from the picturing while fluoroscopic procedures. FluoroGrab has clinical value equivalent to the spot image, and is applied to the most recent fluoroscopic procedures. The radiologist and the radiographers should consider new option for decreasing the radiation exposure delivered to paediatric patients by making equipment modifications to the fluoroscopy to optimize radiation exposure reduction techniques. Thus, we propose the FluoroGrab instead of spot exposure for the reduction of patient exposure dose in paediatric, and try to confirm the effect of the mitigating amount of radiation exposure to paediatric patients when pneumatic reduction and VCUG. Fluorograb is the safe and useful method that shows the equivalent level of accuracy to spot exposure, and to minimize the radiation load to paediatric patients are to be the substitute for the spot exposure for Pneumatic Reduction and VCUG.

  • PDF

Evaluation of Radiation Dose Reduction from the Automatic Exposure Control Technique in Different Manufactures Multi-Detector Computed Tomography (제조사별 다중 검출기 컴퓨터단층촬영 장비의 관전류 자동노출조절 기법의 방사선량 감소 평가)

  • Kim, Yeong-Ok;Seong, Yeol-Hun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.563-571
    • /
    • 2011
  • The purpose of the study was to evaluation of the radiation dose reduction using various automatic exposure control (AEC) systems in different manufactures multi-detector computed tomography (MDCT). We used three different manufacturers for the study: General Electric Healthcare, Philips Medical systems and Siemens Medical Solutions. The general scanning protocol was created for the each examination with the same scanning parameters as many as possible. In the various AEC systems, the evaluation of reduced-dose was evaluated by comparing to fixed mAs with using body phantom. Finally, when we applied to AEC for three manufacturers, the radiation dose reduction decreased each 35.3% in the GE, 58.2% in the Philips, and 48.6% in the Siemens. This applies to variety of the AEC systems which will be very useful to reduce the dose and to maintain the high quality.

  • PDF

Radiation Exposure Reduction in APR1400

  • Bae, C.J.;Hwang, H.R.;Matteson, D.M.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.127-135
    • /
    • 2003
  • The primary contributors to the total occupational radiation exposure in operating nuclear power plants are operation and maintenance activities doting refueling outages. The Advanced Power Reactor 1400 (APR1400) includes a number of design improvements and plans to utilize advanced maintenance methods and robotics to minimize the annual collective dose. The major radiation exposure reduction features implemented in APR1400 are a permanent refueling pool seal, quick opening transfer tube blind flange, improved hydrogen peroxide injection at shutdown, improved permanent steam generator work platforms, and more effective temporary shielding. The estimated average annual occupational radiation exposure for APR1400 based on the reference plant experience and an engineering judgment is determined to be in the order of 0.4 man-Sv, which is well within the design goal of 1 man-Sv. The basis of this average annual occupational radiation exposure estimation is an eighteen (18) month fuel cycle with maintenance performed to steam generators and reactor coolant pumps during refueling outage. The outage duration is assumed to be 28 days. The outage work is to be performed on a 24 hour per day basis, seven (7) days a week with overlapping twelve (12) hour work shifts. The occupational radiation exposure for APR1400 is also determined by an alternate method which consists of estimating radiation exposures expected for the major activities during the refueling outage. The major outage activities that cause the majority of the total radiation exposure during refueling outage such as fuel handling, reactor coolant pump maintenance, steam generator inspection and maintenance, reactor vessel head area maintenance, decontamination, and ICI & instrumentation maintenance activities are evaluated at a task level. The calculated value using this method is in close agreement with the value of 0.4 man-Sv, that has been determined based on the experience aid engineering judgement. Therefore, with the As Low As Reasonably Achievable (ALARA) advanced design features incorporated in the design, APR1400 design is to meet its design goal with sufficient margin, that is, more than a factor of two (2), if operated on art eighteen (18) month fuel cycle.

The investigation of the exposure dose reduction of the Staff according to the Lead Curtain installation in EVAR(Endovascular Aneurysm Repair) surgical operation using C-arm (C-arm을 이용한 EVAR(Endovascular Aneurysm Repair) 시술시 Lead Curtain 설치에 따른 Staff의 피폭선량 감소에 대한 연구)

  • Yoo, In Woung;Chung, Jea Yeon;Lee, Kwan Seob
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2012
  • In EVAR procedure using long time C-arm, we studied exposure dose reduction and effeciency through measuring surgical staff's ESD by installing lead curtain operating table next to. The height 3 the spot (50cm, 100cm, 150cm) dose was measured on 2 locations for 600sec in the X-ray radiation considering the surgical staff's movement. To install the curtains, we compared before and after the dose. As a result, it can confirm that dose of the installation former of 50cm height and after is reduced about 75% and 91% in 2 locations. In 100cm height, the reduction of the dose was a bit confirmed. There as to dose value, measured on 150cm height the installation former and after was nearly no change. This research examined the exposure dose about the radiation of the surgical staff during EVAR procedure in which the operation time is the long time. It was implemented in the object that it reduces the radiation exposure. It could confirm the certain effect of the experimental result exposure dose reduction In EVAR procedure using long time C-arm, we studied exposure dose reduction and effeciency through measuring surgical staff's ESD by installing lead curtain operating table next to. The height 3 the spot (50cm, 100cm, 150cm) dose was measured on 2 locations for 600sec in the X-ray radiation considering the surgical staff's movement. To install the curtains, we compared before and after the dose. As a result, it can confirm that dose of the installation former of 50cm height and after is reduced about 75% and 91% in 2 locations. In 100cm height, the reduction of the dose was a bit confirmed. There as to dose value, measured on 150cm height the installation former and after was nearly no change. This research examined the exposure dose about the radiation of the surgical staff during EVAR procedure in which the operation time is the long time. It was implemented in the object that it reduces the radiation exposure. It could confirm the certain effect of the experimental result exposure dose reduction.

  • PDF

Recent Trend of Occupational Exposure to Ionizing Radiation in Korea, 2015-2019

  • Lim, Young Khi
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.213-217
    • /
    • 2021
  • Background: Radiation exposure can occur as a result of occupational activities utilizing sources of radiation. The average level of occupational exposure is generally similar to the global average, but some workers receive more than this. In this study, the occupational exposure data for workers in Korea to check the recent trend of radiation exposure. Materials and Methods: The data collection and analysis are carried out by two separate periods based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) survey. One is the year 2003 to 2014 for a recent survey, and the other is 2015 to 2019. All available data were collected by annual reports from radiation dose registry organizations. Results and Discussion: The annual dose over the record level to the total workers did not change much compared with the total increasing number of workers in this period. The dose to the nuclear fuel cycle field has a tendency to decrease. It resulted from the efforts of radiation dose reduction with high technology introduced to this area. Also, it is important result that the radiation dose to the workers in radiography is remarkably reduced. Conclusion: The number of radiation workers and average doses were analyzed for occupational categories in Korea. It still needs cooperative efforts between the dose registry organizations for the efficient dose management of Korean radiation workers.

A Study of Radiation Dose Reduction using Bolus in Medical Radiation Exam (볼루스를 이용한 방사선영상검사 피폭선량저감 연구)

  • Jeong-Min Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.1001-1007
    • /
    • 2023
  • Dose limits are not applied to medical radiation exposure therefore justification and optimization should be essential for protecting radiation. This study explores methods to reduce exposure dose undergoing general radiation exam by bolus(tissue equivalent material) with keeping image quality. Hand PA projection with 50 kVp, 5 mAs, SID 100 cm, and 8×10 inch is referred by covered bolus of thickness 0, 3, 5, 8, and 10 mm for evaluation entrance dose and SNR. The entrance dose (μGy) to the hand by bolus thickness was 125.41±0.288, 106.85±0.255, 104.97±0.221, 91.68±0.299, and 90.94±0.106 showing a significant reduction in radiation exposure depending on if the bolus was used and bolus thickness. The SNR of the image was 13.997, 13.906, 12.240, 12.538, and 12.548 at each bolus thickness, showing no significant difference. It was confirmed that if appropriate thickness and size of bolus is used depending on the type of radiological imaging exam and the body site, a significant radiation dose reduction effect can be achieved without deteriorating image quality.

A Study on Estimation of Radiation Exposure Dose During Dismantling of RCS Piping in Decommissioning Nuclear Power Plant

  • Lee, Taewoong;Jo, Seongmin;Park, Sunkyu;Kim, Nakjeom;Kim, Kichul;Park, Seongjun;Yoon, Changyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.243-253
    • /
    • 2021
  • In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.

Effects of Dose Reduction Fiber Shielding Cloth on Scattering Rays in Off-target Site during Angiography (선량저감섬유(Dose Reduction Fiber) 차폐포의 혈관조영술(Angiography) 시술 시 비 시술 부위의 산란선 차폐 효과)

  • Kim, Yong-Jin;Han, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.393-400
    • /
    • 2020
  • Unlike conventional radiographic examinations, angiointerventional procedures have a high risk of radiation exposure to patients or operators due to prolonged radiation exposure time. This study was undertaken to examine effects of reducing the radiation risk by applying dose reduction fiber (DRF) shielding cloth during angiography. To investigate the properties of DRF shielding cloth, we measured the scattered radiation below and above a human phantom using a glass dosimeter, at site distances 10 cm away from the irradiated field. The results obtained reveal a 15 ~ 31% reduction of scattered radiation in the irradiation field, and 53 ~ 70% reduced radiation measured after phantom transmission. Taken together, our data indicate that application of DRF shielding cloth for radiation reduction at non-procedural sites during interventional procedure results in reduction of scattered doses to patients and operators, without affecting the medical examinations. We propose the use of DRF shielding during angiointerventional procedures, in order to reduce the risk of radiation exposure of patients and operators.