Comparison of the Methods of Zona Pellucida Removal and Inner Cell Mass Isolation for the Generation of Parthenogenetic Embryonic Stem Cells in HanWoo Cattle

  • Kim, Dae-Hwan (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry) ;
  • Park, Sang-Kyu (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry) ;
  • Kim, Se-Woong (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry) ;
  • Jung, Yeon-Gil (ET Biotech) ;
  • Roh, Sang-Ho (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry)
  • 투고 : 2011.04.15
  • 심사 : 2011.04.27
  • 발행 : 2011.06.30

초록

In general, zona pellucida (ZP) of the blastocyst has to be removed first, then either isolated the inner cell mass (ICM) or ZP-removed whole blastocyst, which is then cultured on the feeder layer to induce ICM outgrowth for the generation of embryonic stem cells (ESC). However, it is unclear whether ICM isolation before seeding on feeder layer is beneficial or not because the interaction between ICM and trophoblasts may affect cellular growth and/or pluripotency during the culture on the feeder. In the present study, two ZP removal methods (mechanically by splitting with a 28-gauge needle versus chemically by the treatment of acid-Tyrode's solution) and two ICM isolation methods (ZP-free whole blastocyst seeding versus mechanical isolation of ICM) were evaluated for the efficient isolation and culture of putative parthenogenetic bovine ESC. The number of maintained outgrown colonies was counted in each experimental group. As the result, mechanical removal of ZP with a needle and followed by whole ZP-free blastocyst seeding on feeder cells tended to attach more on the feeder layer and resulted in more outgrown colonies with its simple and less time-costing benefits. Currently we are generating ESC lines in HanWoo cattle by using this method for initial outgrowth of the parthenogenetic bovine blastocysts.

키워드

참고문헌

  1. Choi Y-J, Kang H, Sung J, Park SK, Hong S-D, Min B-M and Roh S. 2011. Promoted expression of IGF-1, DNMT3a and OCT-4 in the parthenogenetic murine blastocysts developed in an oil-free microtube culture system may support stem cell generation. T. E. R. M. 8:78-86.
  2. Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE and West MD. 2002. Parthenogenetic stem cells in non-human primates. Science 295:819. https://doi.org/10.1126/science.1065637
  3. Copp AJ. 1978. Interaction between inner cell mass and trophectoderm of the mouse blastocyst. I. A study of cellular proliferation. J. Embryol. Exp. Morphol. 48:109-125.
  4. Cosby N and Dukelow W. 1990. Microencapsulation of single, multiple, and zona pellucida-free mouse preimplantation embryos in sodium alginate and their development in vitro. J. Reprod. Fertil. 90:19-21. https://doi.org/10.1530/jrf.0.0900019
  5. Nishio E, Moriwaki T, Yoshii K and Udagawa Y. 2006. Chemical removal of zona pellucida versus laser assisted hatching after repeated failures of assisted reproductive technology. Reprod. Med. Biol. 5:263-267. https://doi.org/10.1111/j.1447-0578.2006.00151.x
  6. Evans MJ and Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156. https://doi.org/10.1038/292154a0
  7. Fang ZF, Gai H, Huang YZ, Li SG, Chen XJ, Shi JJ, Wu L, Liu A, Xu P and Sheng HZ. 2006. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Exp. Cell Res. 312:3669-3682. https://doi.org/10.1016/j.yexcr.2006.08.013
  8. Gardner RL, Papaioannou VE and Barton SC. 1973. Origin of the ectoplacental cone and secondary giant cells in mouse blastocysts reconstituted from isolated trophoblast and inner cell mass. J. Embryol. Exp. Morphol. 30:561-572.
  9. Iannaccone PM, Taborn GU, Garton RL, Caplice MD and Brenin DR. 1994. Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev. Biol. 163:288-292. https://doi.org/10.1006/dbio.1994.1146
  10. Kaufman MH, Robertson EJ, Handyside AH and Evans MJ. 1983. Establishment of pluripotential cell lines from haploid mouse embryos. J. Embryol. Exp. Morphol. 73:249-261.
  11. Keefer CL, Pant D, Blomberg L and Talbot NC. 2007. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim. Reprod. Sci. 98:147-168. https://doi.org/10.1016/j.anireprosci.2006.10.009
  12. Kim K, Ng K, Rugg-Gunn PJ, Shieh JH, Kirak O, Jaenisch R, Wakayama T, Moore MA, Pedersen RA and Daley GQ. 2007. Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1:346-352. https://doi.org/10.1016/j.stem.2007.07.001
  13. Kuroiwa Y, Kasinathan P, Matsushita H, Sathiyaselan J, Sullivan EJ, Kakitani M, Tomizuka K, Ishida I and Roble JM. 2004. Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat. Genet. 36:775-780. https://doi.org/10.1038/ng1373
  14. Mitalipova M, Beyhan Z and First L. 2001. Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 3:59-67. https://doi.org/10.1089/15204550152475563
  15. Pain B, Clark ME, Shen M, Nakazawa H, Sakurai M, Samarut J and Etches RJ. 1996. Long-term in vitro culture and characterization of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339-2348.
  16. Pashaiasl M, Khodadadi K, Holland MK and Verma PJ. 2010. The efficient generation of cell lines from bovine parthenotes. Cell Reprogram. 12:571-579. https://doi.org/10.1089/cell.2009.0118
  17. Piedrahita A, Anderson B and Bondurant H. 1990. Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology 34:865-877. https://doi.org/10.1016/0093-691X(90)90558-B
  18. Stice L, Strelchenko S, Keefer L and Matthews L. 1996. Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol. Reprod. 54:100-110. https://doi.org/10.1095/biolreprod54.1.100
  19. Talbot NC and Blomberg LA. 2008. The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev. 4:235-254. https://doi.org/10.1007/s12015-008-9026-0
  20. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA and Hearn JP. 1995. Isolation of a primate embryonic stem-cell line. Proc. Natl. Acad. Sci. 92:7844-7848. https://doi.org/10.1073/pnas.92.17.7844
  21. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS and Jones JM. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147. https://doi.org/10.1126/science.282.5391.1145
  22. Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N and Hawk HW. 2005. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat. Biotechnol. 23:445-451. https://doi.org/10.1038/nbt1078
  23. Wang L, Duan E, Sung LY, Jeong BS, Yang X and Tian XC. 2005. Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol. Reprod. 73:149-155. https://doi.org/10.1095/biolreprod.104.037150
  24. Wilmut I and Whitelaw B. 1994. Strategies for production of pharmaceutical proteins in milk. Reprod. Fertil. Dev. 6:625-630. https://doi.org/10.1071/RD9940625
  25. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P and Smith A. 2008. The ground state of embryonic stem cell self-renewal. Nature 453:519-523. https://doi.org/10.1038/nature06968
  26. Ying QL, Stavridis M, Griffiths D, Li M and Smith A. 2003. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21:183-186. https://doi.org/10.1038/nbt780