DOI QR코드

DOI QR Code

The Influence of Circadian Gene Per2 on Cell Damaged by Ultraviolet C

  • Liu, Yanyou (Key Laboratory of Chronobiology, Ministry of Health (Sichuan University), West China School of Preclinical and Forensic Medicine) ;
  • Wang, Yuhui (Key Laboratory of Chronobiology, Ministry of Health (Sichuan University), West China School of Preclinical and Forensic Medicine) ;
  • Jiang, Zhou (Key Laboratory of Chronobiology, Ministry of Health (Sichuan University), West China School of Preclinical and Forensic Medicine) ;
  • Xiao, Jing (Key Laboratory of Chronobiology, Ministry of Health (Sichuan University), West China School of Preclinical and Forensic Medicine) ;
  • Wang, Zhengrong (Key Laboratory of Chronobiology, Ministry of Health (Sichuan University), West China School of Preclinical and Forensic Medicine)
  • Received : 2011.06.06
  • Accepted : 2011.05.02
  • Published : 2011.07.31

Abstract

It has been shown that circadian genes not only play an important role on circadian rhythms, but also participate in other physiological and pathological activities, such as drug dependence, cancer development and radiation injury. The Per2, an indispensable component of the circadian clock, not only modulates circadian oscillations, but also regulates organic function. In the present study, we applied mPER2-upregulated NIH3T3 cells to reveal the relationship of mPer2 and the cells damaged by ultraviolet C (UVC). NIH3T3 cells at the peak of the expression of mPer2 induced by phorbol 12-myristate 13-acetate (PMA) demonstrated little damage by UVC evaluated by MTT assay, cell growth curves and cell colony-forming assay, compared with that at the nadir of the expression of mPer2. Overexpression of mPER2, accompanied p53 upregulated, also demonstrated protective effect on NIH3T3 cells damaged by UVC. These results suggest that mPer2 plays a protective effect on cells damaged by UVC, whose mechanism may be involved in upregulated p53.

Keywords

References

  1. Abarca, C., Albrecht, U. and Spanagel, R. (2002) Cocaine sensitization and reward are under the infl uence of circadian genes and rhythm. Proc. Natl. Acad. Sci. USA 99, 9026-9030. https://doi.org/10.1073/pnas.142039099
  2. Andretic, R., Chaney, S. and Hirsh, J. (1999) Requirement of circadian gene for cocaine ensitization in Drosophila. Science 285, 1066-1068. https://doi.org/10.1126/science.285.5430.1066
  3. Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M. and Weaver, D. R. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525-536. https://doi.org/10.1016/S0896-6273(01)00302-6
  4. Brenneisen, P., Blaudschun, R., Bernards, M., Wenk, J., Wlaschek, M., Meyer-Ingold, W., Schauen, M., Krieg, T. and Scharffetter-Kochanek, K. (1998) Increased temperature: a potentially important side-effect of ultraviolet radiation treatment leading to induction of interstitial collagenase/matrix metalloproteinase-1. Br. J. Dermatol. 139, 537-539. https://doi.org/10.1046/j.1365-2133.1998.02428.x
  5. Cadet, J., Sage, E. and Douki, T. (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res. 571, 3-17. https://doi.org/10.1016/j.mrfmmm.2004.09.012
  6. Chen, S. T., Choo, K. B., Hou, M. F., Yeh, K. T., Kuo, S. J. and Chang, J. G. (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis. 26, 1241-1246. https://doi.org/10.1093/carcin/bgi075
  7. Czeisler, C. A., Duffy, J. F., Shanahan, T. L., Brown, E. N., Mitchell, J. F., Rimmer, D. W., Ronda, J. M., Silva, E. J., Allan, J. S., Emens, J. S., Dijk, D. J. and Kronauer, R. E. (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284, 2177-2181. https://doi.org/10.1126/science.284.5423.2177
  8. Dazard, J. E., Gal, H., Amariglio, N., Rechavi, G., Domany, E. and Givol, D. (2003) Genome-wide comparison of human keratinocyte and squamous cell carcinoma responses to UVB irradiation: implications for skin and epithelial cancer. Oncogene 22, 2993-3006. https://doi.org/10.1038/sj.onc.1206537
  9. de Gruijl, F. R., van Kranen, H. J. and Mullenders, L. H. (2001). UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J. Photochem. Photobiol. 63, 19-27. https://doi.org/10.1016/S1011-1344(01)00199-3
  10. Delaunay, F. and Laudet, V. (2002) Circadian clock and microarrays: mammalian genome gets rhythm. Trends Genet. 18, 595-597. https://doi.org/10.1016/S0168-9525(02)02794-4
  11. Dunlap, J. C. (1999) Molecular bases for circadian clocks. Cell 96, 271-290. https://doi.org/10.1016/S0092-8674(00)80566-8
  12. Ebisawa, T., Uchiyama, M., Kajimura, N., Mishima, K., Kamei, Y., Katoh, M., Watanabe, T., Sekimoto, M., Shibui, K., Kim, K., Kudo, Y., Ozeki, Y., Sugishita, M., Toyoshima, R., Inoue, Y., Yamada, N., Nagase, T., Ozaki, N., Ohara, O., Ishida, N., Okawa, M., Takahashi, K. and Yamauchi, T. (2001) Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2, 342-346. https://doi.org/10.1093/embo-reports/kve070
  13. Fei, P. and El-Deiry, W. S. (2003) p53 and radiation responses. Oncogene. 22, 5774-5783. https://doi.org/10.1038/sj.onc.1206677
  14. Filipski, E., King, V.M., Li, X., Granda, T.G., Mormont, M.C., Liu, X., Claustrat, B., Hastings, M.H. and Lévi, F. (2002) Host circadian clock as a control point in tumor progression. J. Natl. Cancer Inst. 94, 690-697. https://doi.org/10.1093/jnci/94.9.690
  15. Fu, L., Pelicano, H., Liu, J., Huang, P. and Lee, C. (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41-50. https://doi.org/10.1016/S0092-8674(02)00961-3
  16. Gentile, M., Latonen, L. and Laiho, M. (2003) Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses. Nucleic. Acids Res. 31, 4779-4790. https://doi.org/10.1093/nar/gkg675
  17. Haus, E. (2002) Chronobiology of the Mammalian Response to Ionizing Radiation: Potential Applications in Oncology. Chronobio. Int. 19, 77-100. https://doi.org/10.1081/CBI-120002592
  18. He, Y. Y., Huang, J. L., Sik, R. H., Liu, J., Waalkes, M. P. and Chignell, C. F. (2004) Expression profi ling of human keratinocyte response to ultraviolet A: implications in apoptosis. Invest. Dermatol. 122, 533-543. https://doi.org/10.1046/j.0022-202X.2003.22123.x
  19. Hui, H., Yueqi, W., Chaomin, W., Yanyou, L., Bin, Z., Chunlei, Y., Xiaojia, W., Zhengrong, W., Cornelissen-Guillaume, G. and Halberg, F. (2006) Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci. 97, 589-596. https://doi.org/10.1111/j.1349-7006.2006.00225.x
  20. Kentaro, O., Yoshihisa, N. and Masaki, T. (2002) Intracellular calcium mobilization induces period genes via MAP kinase pathways in NIH3T3 cells. FEBS Letters 516, 101-105. https://doi.org/10.1016/S0014-5793(02)02510-3
  21. Lee, C. C. (2005) The circadian clock and tumor suppression by mammalian period genes. Meth Enzymol. 393, 852-861. https://doi.org/10.1016/S0076-6879(05)93045-0
  22. Leena, L. and Marikki, L. (2005) Cellular UV damage responses-Functions of tumor suppressor p53. Biochimica. et. Biophysica. Acta. 1755, 71-89.
  23. Lehmann, J., Pollet, D., Peker, S., Steinkraus, V. and Hoppe, U. (1998) Kinetics of DNA strand breaks and protection by antioxidants in UVA- or UVBirradiated HaCaT keratinocytes using the single cell gel electrophoresis assay. Mutat. Res. 40, 797-108.
  24. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323-331. https://doi.org/10.1016/S0092-8674(00)81871-1
  25. Liu, Y., Wang, Y., Wan, C., Zhou, W., Peng, T., Liu, Y., Wang, Z., Li, G., Cornelisson, G. and Halberg, F. (2005) The role of mper1 in morphine dependence in mice. Neuroscience 130, 383-388. https://doi.org/10.1016/j.neuroscience.2004.09.012
  26. Maltzman, W. and Czyzyk, L. (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell Biol. 4, 1689-1694. https://doi.org/10.1128/MCB.4.9.1689
  27. Masato, I., Isamu, O., Kenji, T., Taroh, S., Kimio, Y., Masahiro, F. and Kazuhiko, N. (2007) Down-regulation of survivin by ultraviolet C radiation is dependent on p53 and results in G2-M arrest in A549 cells. Cancer Letters 248, 292-298. https://doi.org/10.1016/j.canlet.2006.08.005
  28. McKay, B. C., Stubbert, L. J., Fowler, C. C., Smith, J. M., Cardamore, R. A. and Spronck, J. C. (2004) Regulation of ultraviolet light-induced gene expression by gene size. Proc. Natl. Acad. Sci. USA 101, 6582-6586. https://doi.org/10.1073/pnas.0308181101
  29. Meek, D. W. (2004) The p53 response to DNA damage. DNA Repair(Amst) 3, 1049-1056. https://doi.org/10.1016/j.dnarep.2004.03.027
  30. Morse, D. and Sassone-Corsi, P. (2002) Time after time: inputs to and outputs from the mammalian circadian oscillators. Trends Neurosci. 25, 632-7. https://doi.org/10.1016/S0166-2236(02)02274-9
  31. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  32. Panda, S., Antoch, M. P., Miller, B. H., Su, A. I., Schook, A. B., Straume, M., Schultz, P. G., Kay, S. A., Takahashi, J. S. and Hogenesch, J. B. (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307-320. https://doi.org/10.1016/S0092-8674(02)00722-5
  33. Prives, C. and Hall, P. A. (1999) The p53 pathway. J. Pathol. 187, 112-126. https://doi.org/10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3
  34. Ravanat, J. L., Douki, T. and Cadet, J. (2001) Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B63, 88-102.
  35. Reppert, S. M. and Weaver, D. R. (2002) Coordination of circadian timing in mammals. Nature 418, 935-941. https://doi.org/10.1038/nature00965
  36. Sesto, A., Navarro, M., Burslem, F. and Jorcano, J. L. (2002) Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 99, 2965-2970. https://doi.org/10.1073/pnas.052678999
  37. Storch, K. F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F. C., Wong, W. H. and Weitz, C. J. (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78-83. https://doi.org/10.1038/nature744
  38. Takao, J., Ariizumi, K., Dougherty, I. I. and Cruz Jr, P. D. (2002) Genomic scale analysis of the human keratinocyte response to broadband ultraviolet-B irradiation. Photodermatol. Photoimmunol. Photomed. 18, 5-13. https://doi.org/10.1034/j.1600-0781.2002.180102.x
  39. Tornaletti, S. and Hanawalt, P. C. (1999) Effect of DNA lesions on transcription elongation. Biochimie. 81, 139-146. https://doi.org/10.1016/S0300-9084(99)80046-7
  40. Tyrrell, R. M (1994). The molecular and cellular pathology of solar ultraviolet radiation. Mol. Aspects Med. 15, 1-77. https://doi.org/10.1016/0098-2997(94)90008-6
  41. Valery, C., Grob, J. J. and Verrando, P. (2001) Identifi cation by cDNA microarray technology of genes modulated by artifi cial ultraviolet radiation in normal human melanocytes: relation to melanocarcinogenesis. J. Invest. Dermatol. 117, 1471-1482. https://doi.org/10.1046/j.0022-202x.2001.01607.x
  42. Vousden, K.H. and Lu, X. (2002) Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594-604. https://doi.org/10.1038/nrc864
  43. Zheng, B., Albrecht, U., Kaasik, K., Sage, M., Lu, W., Vaishnav, S., Li, Q., Sun, Z. S., Eichele, G., Bradley, A. and Lee, C. C. (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683-694. https://doi.org/10.1016/S0092-8674(01)00380-4
  44. Ziegler, A., Jonason, A. S., Leffell, D. J., Simon, J. A., Sharma, H. W., Kimmelman, J., Remington, L., Jacks, T. and Brash, D. E. (1994) Sunburn and p53 in the onset of skin cancer. Nature 372, 773-776. https://doi.org/10.1038/372773a0

Cited by

  1. 3-(4-(tert-Octyl)phenoxy)propane-1,2-diol suppresses inflammatory responses via inhibition of multiple kinases vol.83, pp.11, 2012, https://doi.org/10.1016/j.bcp.2012.02.018