DOI QR코드

DOI QR Code

Effects of Alpha 1- and Alpha 2-Adrenoreceptor Stimulation on Galanin mRNA Expression in Primary Cultured Superior Cervical Ganglion Neurons

  • Xing, Yi (Department of Neurosurgery, Shandong University Affi liated Shandong Provincial Hospital) ;
  • Chen, Xiuying (Department of Electroencephalography, Shandong University Affi liated Shandong Provincial Hospital) ;
  • Liu, Zhen (Department of Anatomy, Shandong University School of Medicine) ;
  • Li, Hao (Department of Anatomy, Shandong University School of Medicine) ;
  • Liu, Huaxiang (Department of Rheumatology, Shandong University Qilu Hospital) ;
  • Li, Zhenzhong (Department of Anatomy, Shandong University School of Medicine)
  • Received : 2010.09.20
  • Accepted : 2011.01.23
  • Published : 2011.07.31

Abstract

Galanin (Gal) is a 29-amino-acid neuropeptide which is expressed in superior cervical ganglion (SCG) neurons and plays a trophic role in the adult animal and acts as an inhibitory modulator of cholinergic and noradrenergic neurotransmission. Whether activation or inhibition of alpha-adrenoreceptors infl uences Gal mRNA expression in SCG neurons remains unknown. Here, we have evaluated the possible regulation of Gal mRNA expression with acute (4 h) and chronic (4 days) stimulation of alpha 1- and alpha 2-adrenoreceptor agonists or antagonists in primary cultured SCG neurons. The results showed that the amount of Gal mRNA expression in cultured SCG neurons increased signifi cantly after chronic stimulation with alpha 2-adrenoreceptor antagonist yohimbine compared with control SCG neurons at the same time point, whereas the amount of Gal mRNA expression decreased signifi cantly after chronic stimulation with alpha 2-adrenoreceptor agonist clonidine as compared with that in control group. All these effects were not dose-dependent on the administration of alpha 2-adrenoreceptor agonist clonidine or alpha 2-adrenoreceptor antagonist yohimbine. Alpha 1-adrenoreceptor agonist phenylephrine or antagonist prazosin chronic stimulation did not have effects on Gal mRNA expression. Acute exposure of these agents did not have effects on Gal mRNA expression. The present study showed that Gal may be regulated by activation or inhibition of alpha 2-adrenoreceptors, but not alpha 1-adrenoreceptors in sympathetic neurons.

Keywords

References

  1. Barrera, G., Hernandez, A., Poulin, J. F., Laforest, S., Drolet, G. and Morilak, D. A. (2006) Galanin-mediated anxiolytic effect in rat central amygdala is not a result of corelease from noradrenergic terminals. Synapse 59, 27-40. https://doi.org/10.1002/syn.20208
  2. Boehm, S. and Huck, S. (1997) Receptors controlling transmitter release from sympathetic neurons in vitro. Prog. Neurobiol. 51, 225-242. https://doi.org/10.1016/S0301-0082(96)00056-1
  3. Brum, P. C., Hurt, C. M., Shcherbakova, O. G., Kobilka, B. and Angelotti, T. (2006) Differential targeting and function of alpha2A and alpha2C adrenergic receptor subtypes in cultured sympathetic neurons. Neuropharmacology 51, 397-413. https://doi.org/10.1016/j.neuropharm.2006.03.032
  4. Brumovsky, P., Hygge-Blakeman, K., Villar, M. J., Watanabe, M., Wiesenfeld- Hallin, Z. and Hokfelt, T. (2006) Phenotyping of sensory and sympathetic ganglion neurons of a galanin-overexpressing mouse--possible implications for pain processing. J. Chem. Neuroanat. 31, 243-262. https://doi.org/10.1016/j.jchemneu.2006.02.001
  5. Chen, Q., Li, D. P. and Pan, H. L. (2006) Presynaptic alpha1 adrenergic receptors differentially regulate synaptic glutamate and GABA release to hypothalamic presympathetic neurons. J. Pharmacol. Exp. Ther. 316, 733-742.
  6. Girard, B. M., May, V., Bora, S. H., Fina, F. and Braas, K. M. (2002) Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regul. Pept. 109, 89-101. https://doi.org/10.1016/S0167-0115(02)00191-X
  7. Gold, M. S., Dastmalchi, S. and Levine, J. D. (1997) Alpha 2-adrenergic receptor subtypes in rat dorsal root and superior cervical ganglion neurons. Pain 69, 179-190. https://doi.org/10.1016/S0304-3959(96)03218-6
  8. Hein, L. (2006) Adrenoceptors and signal transduction in neurons. Cell Tissue Res. 326, 541-551. https://doi.org/10.1007/s00441-006-0285-2
  9. Hobson, S. A., Holmes, F. E., Kerr, N. C., Pope, R. J. and Wynick, D. (2006) Mice defi cient for galanin receptor 2 have decreased neurite outgrowth from adult sensory neurons and impaired pain-like behaviour. J. Neurochem. 99, 1000-1010. https://doi.org/10.1111/j.1471-4159.2006.04143.x
  10. Hokfelt, T., Xu, Z. Q., Shi, T. J., Holmberg, K. and Zhang, X. (1998) Galanin in ascending systems. Focus on coexistence with 5-hydroxytryptamine and noradrenaline. Ann. N. Y. Acad. Sci. 863, 252-263. https://doi.org/10.1111/j.1749-6632.1998.tb10700.x
  11. Holmberg, K., Kuteeva, E., Brumovsky, P., Kahl, U., Karlström, H., Lucas, G. A., Rodriguez, J., Westerblad, H., Hilke, S., Theodorsson E., Berge, O. G., Lendahl, U., Bartfai, T. and Hökfelt, T. (2005) Generation and phenotypic characterization of a galanin overexpressing mouse. Neuroscience 133, 59-77. https://doi.org/10.1016/j.neuroscience.2005.01.062
  12. Holmes, A., Yang, R. J. and Crawley, J. N. (2002) Evaluation of an anxiety-related phenotype in galanin overexpressing transgenic mice. J. Mol. Neurosci. 18, 151-165. https://doi.org/10.1385/JMN:18:1-2:151
  13. Holmes, F. E., Mahoney, S. A. and Wynick, D. (2005) Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury. Neuropeptides 39: 191-199. https://doi.org/10.1016/j.npep.2005.01.001
  14. Klimaschewski, L. (1997) Regulation of galanin in rat sympathetic neurons in vitro. Neurosci. Lett. 234, 87-90. https://doi.org/10.1016/S0304-3940(97)00643-5
  15. Kozicz, T. (2001) Axon terminals containing tyrosine hydroxylase- and dopamine-beta-hydroxylase immunoreactivity form synapses with galanin immunoreactive neurons in the lateral division of the bed nucleus of the stria terminalis in the rat. Brain Res. 914, 23-33. https://doi.org/10.1016/S0006-8993(01)02770-6
  16. Landry, M., Liu, H. X., Shi, T. J., Brumovsky, P., Nagy, F. and Hokfelt, T. (2005) Galaninergic mechanisms at the spinal level: focus on histochemical phenotyping. Neuropeptides 39, 223-231. https://doi.org/10.1016/j.npep.2005.02.004
  17. Liu, H., Liu, Z., Xu, X., Yang, X., Wang, H. and Li, Z. (2010) Nerve growth factor regulates galanin and neuropeptide Y expression in primary cultured superior cervical ganglion neurons. Pharmazie 65, 219-223.
  18. Liu, Z. and Li, Z. (2008) Regulation of galanin and galanin receptor 2 expression by capsaicin in primary cultured dorsal root ganglion neurons. In Vitro Cell. Dev. Biol. Anim. 44, 379-384. https://doi.org/10.1007/s11626-008-9118-9
  19. Melnikova, V. I., Raison, D., Hardin-Pouzet, H., Ugrumov, M. V., Calas, A. and Grange-Messent, V. (2006) Noradrenergic regulation of galanin expression in the supraoptic nucleus in the rat hypothalamus. An ex vivo study. J. Neurosci. Res. 83, 857-863. https://doi.org/10.1002/jnr.20779
  20. Miller, M. A., Kolb, P. E., Leverenz, J. B., Peskind, E. R and Raskind, M. A. (1999) Preservation of noradrenergic neurons in the locus ceruleus that coexpress galanin mRNA in Alzheimer's disease. J. Neurochem. 73, 2028-2036.
  21. Norberg, A., Griffi ths, W. J., Hjelmqvist, L., Jornvall, H. and Rokaeus, A. (2004) Identifi cation of variant forms of the neuroendocrine peptide galanin. Rapid. Commun. Mass. Spectrom. 18, 1583-1591. https://doi.org/10.1002/rcm.1522
  22. Ogren, S. O., Kuteeva, E., Hokfelt, T. and Kehr, J. (2006) Galanin receptor antagonists: a potential novel pharmacological treatment for mood disorders. CNS Drugs 20, 633-654. https://doi.org/10.2165/00023210-200620080-00003
  23. Shivachar, A. C. and Eikenburg, D. C. (1999) Differential effects of epinephrine and norepinephrine on cAMP response and g(i3)alpha protein expression in cultured sympathetic neurons. J. Pharmacol. Exp. Ther. 291, 258-264.
  24. Simpson, K. L., Waterhouse, B. D. and Lin, R. C. (2006) Characterization of neurochemically specifi c projections from the locus coeruleus with respect to somatosensory-related barrels. Anat. Rec. A. Discov. Mol. Cell Evol. Biol. 288, 166-173.
  25. Straub, R. H. and Harle, P. (2005) Sympathetic neurotransmitters in joint infl ammation. Rheum. Dis. Clin. North Am. 31, 43-59. https://doi.org/10.1016/j.rdc.2004.09.003
  26. Suarez, V., Guntinas-Lichius, O., Streppel, M., Ingorokva, S., Grosheva, M., Neiss, W. F., Angelov, D. N. and Klimaschewski L. (2006) The axotomy-induced neuropeptides galanin and pituitary adenylate cyclase-activating peptide promote axonal sprouting of primary afferent and cranial motor neurones. Eur. J. Neurosci. 24, 1555-1564. https://doi.org/10.1111/j.1460-9568.2006.05029.x
  27. Trendelenburg, A. U., Philipp, M., Meyer, A., Klebroff, W., Hein, L. and Starke, K. (2003) All three alpha2-adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn. Schmiedebergs Arch. Pharmacol. 368, 504-512. https://doi.org/10.1007/s00210-003-0829-x
  28. Van Hoomissen, J. D, Holmes, P. V., Zellner, A. S., Poudevigne, A. and Dishman, R. K. (2004) Effects of beta-adrenoreceptor blockade during chronic exercise on contextual fear conditioning and mRNA for galanin and brain-derived neurotrophic factor. Behav. Neurosci. 118, 1378-1390. https://doi.org/10.1037/0735-7044.118.6.1378
  29. Wettschureck, N. and Offermanns, S. (2005) Mammalian G proteins and their cell type specifi c functions. Physiol. Rev. 85, 1159-1204. https://doi.org/10.1152/physrev.00003.2005
  30. Xu, Z. Q., Tong, Y. G., Hokfelt, T. (2001) Galanin enhances noradrenaline- induced outward current on locus coeruleus noradrenergic neurons. Neuroreport 12, 1779-1782. https://doi.org/10.1097/00001756-200106130-00052
  31. Yang, X., Liu, Z. and Li, Z. (2009) Effects of norepinephrine on galanin expression in dorsal root ganglion neurons in vitro. Curr. Ther. Res. Clin. E. 70, 19-28. https://doi.org/10.1016/j.curtheres.2009.02.002
  32. Yang, X., Liu, Z., Wang, L., Liu, H., Wang, H. and Li, Z. Z. (2008) Exogenous galanin regulates capsaicin-evoked substance P release from primary cultured dorsal root ganglion neurons. Neuro. Endocrinol. Lett. 29, 911-916.