DOI QR코드

DOI QR Code

Nitrogen Removal Via Sediment Denitrification and Its Seasonal Variations in Major Estuaries of South Coast of Korean Peninsula

남해안 주요 하구 갯벌 퇴적물의 탈질소화를 통한 질소 영양염 제거

  • Heo, Nak-Won (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Ji-Young (Division of Earth Environmental System, Pusan National University) ;
  • Choi, Jae-Ung (Division of Earth Environmental System, Pusan National University) ;
  • An, Soon-Mo (Division of Earth Environmental System, Pusan National University)
  • 허낙원 (부산대학교 지구환경시스템학부) ;
  • 이지영 (부산대학교 지구환경시스템학부) ;
  • 최재웅 (부산대학교 지구환경시스템학부) ;
  • 안순모 (부산대학교 지구환경시스템학부)
  • Received : 2011.01.05
  • Accepted : 2011.03.23
  • Published : 2011.05.31

Abstract

Sediment oxygen demand(SOD) and denitrification rates were measured in four major estuaries(Suncheon Bay, Seomjin river estuary, Goseong stream estuary and Masan Bay) in south coast of Korean peninsula from March of 2009 to May 2010 to estimate organic matter cleaning capacity. SOD was estimated from the temporal dissolved oxygen concentration change and isotopic pairing technique was employed to measure denitrification. Sediment oxygen demand(SOD) was ranged from -5.1 to 24.6 mmole $O_2m^{-2}d^{-1}$ and denitrification rate was ranged from 0.0 to 3.9 mmole $N_2m^{-2}d^{-1}$in the study area. SOD was the highest in Masan Bay(-2.2 to 19.2, average = 10.2 mmole $O_2m^{-2}d^{-1}$) and Suncheon, Goseong, Tae-an and Seomjin followed. Denitrification was also the highest in Masn Bay(0.0 to 3.9, average = 1.0 mmole $N_2m^{-2}d^{-1}$) and Goseong, Seomjin, Suncheon and Taean followed. The effect of benthic photosynthesis by microphytobenthos on denitrification was evident in some season of Tae-an, Seomjin, and Masn Bay. The increased oxygen level produced by photosynthesis stimulated nitrification without severe adverse effect on denitrification and, as a result, coupled nitrification and denitrification was enhanced in these areas. A difference of seasonal patterns of denitrification at each site depended on relative importance of denitrification on different nitrate source($D_w$: nitrate from water column and $D_n$: nitrated produced during nitrification). Denitrification was maximum during spring in Goseong, Suncheon and Masan Bay. On the contrary, denitrification was the highest during summer in Tae-an and Seomjin estuary.

남해안의 주요 하구 4곳(순천만, 섬진강, 고성천, 마산만)과 서해안의 태안 근소만 갯벌에서 2009년 3월부터 2010년 5월까지 유기물 정화능력을 파악할 수 있는 퇴적물 산소요구량(Sediment Oxygen Demand; SOD)과 탈질소화(Denitrification)를 측정하였다. 퇴적물 산소요구량은 퇴적물 배양 중 시간당 용존산소감소율로 부터 추정되었으며, 탈질소화 측정에는 질소 안정동위원소를 추적자로 이용하는 isotope paring technique이 사용되었다. 조사지역의 퇴적물 산소요구량과 탈질소화율은 각각 -5.1~24.6 mmole $O_2m^{-2}d^{-1}$와 0.0~3.9 mmole $N_2m^{-2}d^{-1}$의 범위를 보였다. 퇴적물 산소요구량이 가장 높은 곳은 마산만(평균 = 10.2(범위 =-2.2~19.2 mmole $O_2m^{-2}d^{-1}$)이었으며, 순천만, 고성, 태안, 섬진강 순으로 나타났다. 탈질소화율도 마산만(평균 = 1.0(범위 =0.0~3.9) mmole $N_2 m^{-2}d^{-1}$이 가장 높았으며, 고성, 섬진강, 순천만, 태안 순으로 나타났다. 태안, 섬진강, 마산 지역에서는 계절적으로 저서미세조류에 의한 광합성이 탈질소화에 뚜렷한 영향을 미쳤는데 광합성 동안 생성된 산소는 혐기성과정인 탈질소화를 저해하기 보다는 질산화를 원활하게 하여, 질산화-탈질소화 연계과정을 촉진시켰다. 남해안 허구에서 탈질소화의 계절변화 유형(봄철 최대 유형과 여름철 최대 유형)의 지역적 차이는 탈질소화에 사용되는 두 질산원($D_w$; 강을 통해 공급된 질산과 $D_n$; 질산화-탈질소화 연계과정에 의해 생성된 질산)의 상대적 중요성에 따라 결정되었다. 즉 봄철에 탈질소화가 높게 나타난 순천만, 고성, 마산은 여름철에 비해 봄철 수층 질산염이 풍부하였고, 이를 통해 $D_w$가 증가되었다. 태안과 섬진강 지역이 여름철에 탈질소화 최대값을 보인 이유는 수층의 질산염이 고갈되지 않은 상태에서 여름철 수온의 증가로 $D_w$가 증가하였고, 이와 더불어, 산소고갈이 나타나지 않아 질산화에 좋은 환경이 조성되었으며, 결과적으로 $D_n$이 증가되었기 때문이다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. 권지남, 2008. 낙동강 하구 갯벌 퇴적물의 유기물 분해와 질소 순환. 석사학위 논문, 부산대학교, pp. 46-60.
  2. 김동선, 김경희, 2008. 서해 근소만에서 영양염의 조석 및 계절변화. Ocean and Polar Res., 30(1): 1-10. https://doi.org/10.4217/OPR.2008.30.1.001
  3. 김용현, 신현출, 임경훈, 2005. 남해안 여자만의 저서 다모류 군집 분포. 한국수산학회지, 38(6): 399-412.
  4. 김종화, 1984. 진해만의 해수교환. 석사학위 논문, 부산수산대학교, 36 pp.
  5. 김창제, 김미금, 손창배, 강성진, 2002. 당항만의 해수유동에 관한 연구. 한국항해항만학회지, 26(2): 227-233.
  6. 나태희, 이동섭, 2005. 공극수 모델로 추정한 강화도 갯벌의 탈질산화 작용. 한국해양학회지, 바다, 10(1): 56-68.
  7. 서진영, 안순모, 최진우, 2007. 하구역 모래갯벌인 봉암갯벌(경남 마산)에 서식하는 대형저 서동물의 봄철 공간 분포. 한국해양학회지, 바다, 12(3): 211-218.
  8. 안순모, 2005. 강화도 갯벌 퇴적물의 산소요구량과 탈질소화의 계절 변화. 한국해양학회지, 바다, 10(1): 47-55.
  9. 안순모, 이재학, 우한준, 이형곤, 유재원, 제종길, 2006. 새만금 방조제공사로 인한 조하대 환경과 저서동물 군집 변화. Ocean and Polar Res., 28(4): 369-383. https://doi.org/10.4217/OPR.2006.28.4.369
  10. 이용우, 최은정, 김영상, 강창근, 2009. 광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저 서미세조류의 계절변화. 한국해양학회지, 바다, 14(1): 48-55.
  11. 이재성, 박미옥, 안순모, 김성길, 김성수, 정래홍, 박종수, 진현국, 2007. 낙동강 하구 갯벌 사질 퇴적물에서 생지화학적 유기탄소 순환. 한국해양학회지, 바다, 12(4): 349-358.
  12. 최만식, 천종화, 우한준, 이희일, 1999. 시화호 표층퇴적물의 중금속 및 퇴적상 변화. 한국 환경과학회지, 8(5): 593-600.
  13. 최정민, 우한준, 이연규, 2007. 반폐쇄된 만내 부유퇴적물 유.출입과 표층퇴적물 조성 변화 -남해 여자만 봄철-. 한국해양환경공학회지, 10(1): 1-12.
  14. 해양수산부, 1998. 해양환경공정시험방법. 해양수산부고시 제1998-4호, 316 pp.
  15. 허성회, 오임상, 1997. 인공호수 시화호와 주변해역의 생태계 연구 : 서문. 한국해양학회지, 바다, 2(2): 49-52.
  16. Aller, J.Y. and Aller, R.C., 1986. Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the hebble site, Western North Atlantic. Deep-Sea Res., 33: 755-790. https://doi.org/10.1016/0198-0149(86)90088-9
  17. Aller, R.C., 1980. Relationships of Tube-dwelling Benthos with sediment and overlying water chemistry. In Marine Benthic Dynamics, Tenore, K.R. and Coull, B.C. (eds.) Univ. S. Carolina Press. pp. 285-310.
  18. Aller, R.C. and Yingst, J.Y., 1978. Biogeochemistry of tube-dwellings: a study of the sedentary polychaete Amphitrite ornata (Leidy). Mar. Res., 36: 201-254.
  19. An, S.M., 1999. Nitrogen cycling and denitrification in Galveston bay. Ph.D Thesis, Texas A&M University, USA, pp. 135-177.
  20. An, S.M., Gardner, W.S. and Kana, T.M., 2001. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis. Appl. Environ. Micobiol., 67(3): 1171-1178. https://doi.org/10.1128/AEM.67.3.1171-1178.2001
  21. An, S.M. and Joye S.B., 2001. Enhancement of coupling nitrification- denitrification by benthic photosynthesis in shallow estuarine sediments. Limnol. Oceanogr., 46(1): 62-74. https://doi.org/10.4319/lo.2001.46.1.0062
  22. Anderson, T.K., Hensen, M.H. and Sorensen, J., 1984. Diurnal variation in nitrogen cycling in coastal marine sediments. 1. Denitrification. Mar. Biol., 83: 171-176. https://doi.org/10.1007/BF00394725
  23. Barnes, J., Owens, N.J.P, 1998. Denitrification and nitrous oxide concentrations in the Humber estuary, UK, and adjacent coastal zones. Mar. Poll. Bull., 37: 247-260.
  24. Cornwell, J.C., Kemp, W.M. and Kana, T.M, 1999. Denitrification in coastal ecosystems: methods, environmental controls and ecosystem level controls, a review. Aquat Ecol., 33: 41-54. https://doi.org/10.1023/A:1009921414151
  25. Devol, A.H., Codispoti, L.A. and Christensen, J.P., 1997. Summer and winter denitrification rates in western Arctic shelf sediments. Continental shelf research, 17(9): 1029-1050. https://doi.org/10.1016/S0278-4343(97)00003-4
  26. Epply, R.W., Renger, E.H., Venrick, E.L. and Mullin, N.N., 1973. A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean. Limnol. Oceanogr., 18: 534-551. https://doi.org/10.4319/lo.1973.18.4.0534
  27. Glibert, P.M. and Garside, C., 1982. Micro and fine-scale chemistry: analytical limitations and recommendations. Technical Report No. 82008, University of Miami, pp. 251-279.
  28. Haines, J.R., Atlas, R.M., Griffiths, R.R. and Morita, R.Y., 1981. Denitrification and nitrogen fixation in Alaskan continetal shelf sediments. Appl. Environ. Microbiol., 41: 412-421.
  29. Harrison, W.G., 1978. Experimental measurements of nitrogen remineralization in coastal waters. Limnol. Oceanogr., 23: 684-694. https://doi.org/10.4319/lo.1978.23.4.0684
  30. Henriksen, K., Rasmussen, M.B. and Jensen, A., 1983. Effect of bioturbation on microbiol nitrogen transformations in the sediment and fluxes of ammonium and nitrate to overlying water. Ecol. Bull., 35: 193-205.
  31. Hopkinson Jr., C.S., 1987. Nutrient regeneration in shallow-water sediments of the estuarine plume region of the nearshore Georgia Bight, USA. Marine Biology, 94: 127-142. https://doi.org/10.1007/BF00392905
  32. Howarth, R.W., Marino, R. and Lane. J., 1988. Nitrogen fixation in freshwater, estuarine and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr., 33: 669-687. https://doi.org/10.4319/lo.1988.33.4_part_2.0669
  33. Howes, B.L., Dacey, J.W.H. and King, G.M., 1984. Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments. Limnol. Oceanogr., 29(5): 1037-1051. https://doi.org/10.4319/lo.1984.29.5.1037
  34. Hylleberg, J., 1975. Selective feeding by Aberenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia, 14: 113-137. https://doi.org/10.1080/00785236.1975.10421972
  35. Jenkins, M.C. and Kemp W. M., 1984. The coupling of nitrification and denitrification in two estuarine sediment. Limnol. Oceanogr., 29: 609-619. https://doi.org/10.4319/lo.1984.29.3.0609
  36. Jones, M.N., 1984. Nitrate reduction by shaking with cadmium: alternative to cadmium columns. Water Res., 18(5): 643-646. https://doi.org/10.1016/0043-1354(84)90215-X
  37. Jorgensen, B.B., 1977 The sulfur cycle of coastal marine sediment( Limfjorden, Denmark). Limnol. Oceanogr., 22(3): 814-832. https://doi.org/10.4319/lo.1977.22.5.0814
  38. Jorgensen. B.B. and Srensen, J., 1985. Seasonal cycles of $O_2,\;NO_3^-$ , and $SO_4^{2-}$ reduction in estuarine sediments. The significance of an $NO_3^-$ reduction maximum in spring. Mar. Ecol. Prog. Ser., 24: 65-74. https://doi.org/10.3354/meps024065
  39. Joye, S.B. and Paerl, H.W., 1994. Nitrogen cycling in microbial mats: rates and patterns of denitrification and nitrogen fixation. Marine biology, 119: 285-295. https://doi.org/10.1007/BF00349568
  40. Kana, T.M., Darkangelo, C., Hunt, M.D., Oldham, J.B., Bennett, G.E. and Cornwell, J.C., 1994. Membrane inlet mass spectrometer for rapid high precision determination of $N_2$, $O_2$ and Ar in environmental water samples. Anal. Chem., 66: 4166-4170. https://doi.org/10.1021/ac00095a009
  41. Kemp, W.M. and Boynton, W.R., 1981. External and internal factors regulating metabolic rates of an estuarine benthic community. Oecologia, 51: 19-27. https://doi.org/10.1007/BF00344646
  42. Kemp, W.M., Sampou, P. and Mayer, M., 1990. Ammonium recycling versus denitrification in Chesapeake Bay sediment. Limnol. Oceanogr., 35(7): 1545-1563. https://doi.org/10.4319/lo.1990.35.7.1545
  43. Koike, I. and Sorensen, J., 1988. Nitrate reduction and denitrification in marine sediments, Chapter 11: In Blackburn, T.H. and Sorensen, J. (eds.), Nitrogen Cycling in Coastal Marine Environments. Wiley.
  44. Kristensen, E., Jensen, M.H. and Andersen, T.K., 1985. The impact of polychaeta (Nereis virens Sars) burrows on nitrification and nitrate reduction in estuarine sediments. Exp. Mar. Biol. Ecol., 85: 75-91. https://doi.org/10.1016/0022-0981(85)90015-2
  45. Kuwae, T., Hososkawa, Y. and Eguchi, N., 1998. Dissolved inorganic nitrogen cycling in Banzu intertidal sand-flat, Japan. Mangroves and Salt Marshes 2: 167-175. https://doi.org/10.1023/A:1009973605222
  46. McCarthy, J.J., 1972. The uptake of urea by natural populations of marine phytoplankton. Limnol. Oceanogr., 17: 738-748. https://doi.org/10.4319/lo.1972.17.5.0738
  47. McCarthy, J.J., Taylor, W.R. and Taft, J.L., 1977. Nitrogenous nutrition of the plankton in the Chesapeake Bay. 1. Nutrient availability and phytoplankton preferences. Limnol. Oceanogr., 22: 996-1011. https://doi.org/10.4319/lo.1977.22.6.0996
  48. Nedwell, D.B., Blackburn and Wiebe, W.J., 1994. Dynamic nature of the turnover of organic carbon, nitrogen and sulphur in the sediments of a Jamaican mangrove forest. Mar. Ecol. Prog. Ser., 110: 223-231. https://doi.org/10.3354/meps110223
  49. Nedwell, B.D., Jickells, T.D., Trimmer, M. and Sanders, R., 1999. Nutrient in estuaries. Adv. Ecol. Res., 29: 43-92. https://doi.org/10.1016/S0065-2504(08)60191-9
  50. Nedwell, D.B. and Trimmer, M., 1996. Nitrogen fluxes through the upper estuary of the Great Ouse, England: The role of benthic sediments. Mar. Ecol. Prog. Ser., 142: 273-286. https://doi.org/10.3354/meps142273
  51. Nielsen, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microb. Ecol., 86: 357-362. https://doi.org/10.1111/j.1574-6968.1992.tb04828.x
  52. Nielsen, L.P., Christensen, P.B., Revsbech N.P. Sorensen, J., 1990. Denitrification and photosynthesis in stream sediment studied with microsensor and whole-core technique. Limnol Oceanogr., 35(5): 1135-1144. https://doi.org/10.4319/lo.1990.35.5.1135
  53. Nielsen, L.P., Sloth N.P., 1994. Denitrification, nitrification and nitrogen assimilation in photosynthetic microbial mats. In: Stahl, L.J., Caumette, P (eds) Microbial mats, structure, Development and environmental significance. NATO ASI Series G, Ecological Sciences, 35: 319-321.
  54. Oremland, R.S., Umberger, C., Culbertson, C.W. and Smith, R.L., 1984. Denitrification in San francisco bay sediments. Appl. Environ. Microbiol., 47: 1106-1112.
  55. Park, Y.A., Lee, C.B. and Choi, J.H., 1984. Sedimentary environments of Gwangyang Bay, southern coast of Korea. Oceanol. Soc., 19: 82-88.
  56. Patel, A.B., 2008. Benthic denitrification and organic matter mineralization in intertidal flats of an enclosed coastal inlet, Ago Bay, Japan. Marine Pollution Bulletin, 57: 116-124. https://doi.org/10.1016/j.marpolbul.2007.10.008
  57. Reay, W.G., Gallagher, D.L. and Simmons Jr. G.M., 1995. Sedimentwater column oxygen and nutrient fluxes in nearshore environments of the lower Delmarva Peninsula, USA. Mar. Ecol. Prog. Ser., 118: 215-227. https://doi.org/10.3354/meps118215
  58. Pelegri S.P. and Blackburn T.H., 1994. Bioturbation effects of the amphipod Corophium volutator on microbial nitrogen transformations in marine sediments. Mar. Biol., 121: 253-258. https://doi.org/10.1007/BF00346733
  59. Rhoads, D.C., 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. Ann. Rev., 12: 263-300.
  60. Richards, W.A., Cline, J.D., Broenkow, W.W. and Atkinson, L.P., 1965. Some consequences of the decomposition of organic matter in Lake Nitinat, an anoxic Fjord. Limnol. Oceanogr., 10: 185-201. https://doi.org/10.4319/lo.1965.10.2.0185
  61. Risgaard-Peterson, N., 2003. Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments: On the influence of benthic microalgae. Limnol. Oceanogr., 48: 93-105. https://doi.org/10.4319/lo.2003.48.1.0093
  62. Risgaard-Peterson, N., Rysgaard, S., Nielsen, L.P. and Revsbech, N.P., 1994. Diurn- al variation of denitrification and nitrification in sediments colonized by benthic microphytes. Limnol. Oceanogr., 39(3): 573-579. https://doi.org/10.4319/lo.1994.39.3.0573
  63. Rowe, G.T., Clifford, C.H., Smith, J.K. Jr. and Hamilton, P.L., 1975. Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature, 255: 215-217. https://doi.org/10.1038/255215a0
  64. Rysgaard, S., Christensen P.B. and Nielsen L.P., 1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Mar. Ecol. Prog. Ser., 126: 111-121. https://doi.org/10.3354/meps126111
  65. Seiki, T., Izawa, H., Date, E., 1989. Benthic nutrient remineralization and oxygen consumption in the coastal area of Hiroshima Bay. Water Research, 23: 219-228. https://doi.org/10.1016/0043-1354(89)90046-8
  66. Seiki, T., Izawa, H., Date, E. and Sunahara, 1994. Sediment oxygen demand in Hiroshima bay. Wat. Res., 28: 385-393. https://doi.org/10.1016/0043-1354(94)90276-3
  67. Seitzinger, S.P., 1988. Denitrification in freshwater and coastal marine ecosystem: Ecological and geochemical significance. Limnol. Oceanogr., 33: 702-724. https://doi.org/10.4319/lo.1988.33.4_part_2.0702
  68. Seitzinger, S.P., Pilson, M.E. and Nixon, S.W., 1983. $N_2O$ production in near-shore marine sediments. Science, 222: 1244-1246. https://doi.org/10.1126/science.222.4629.1244
  69. Smith, K.L. Jr. and Teal, J.M., 1973. Deep-Sea Benthic Community: Respiration an in situ study at 1850 meters. Science, 179: 282-283. https://doi.org/10.1126/science.179.4070.282
  70. Stickland, J.D.H. and Parsons, T.R., 1972. A practical handbook of seawater analysis. Fisheries Reserch Board of Canada Bulletin, 167: 49-80.
  71. Sundbck, K. and Graneli, W., 1988. Influence of microphytobenthos on the nutrient flux between sediment and water: a laboratory study. Mar. Ecol. Prog. Ser., 43: 63-69. https://doi.org/10.3354/meps043063
  72. Sundbck, K., Miles, A. and Goransson, E., 2000. Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study. Mar. Ecol. Prog. Ser., 200: 59-76. https://doi.org/10.3354/meps200059
  73. Thompson, S.P., 1995. Seasonal pattern of nitrification and denitrification in a natural and a restored salt marsh. Estuaries, 18: 399-408. https://doi.org/10.2307/1352322
  74. Trimmer, M., Nedwell, Sivyer, D.B. and Malcolm, S.J., 1998. Nitrogen fluxes through the lower estuary of the river Great Ouse, England: The role of the bottom sediments. Mar. Ecol. Prog. Ser., 163: 109-124. https://doi.org/10.3354/meps163109
  75. Trimmer, M. and Nicholls, J.C., 2009. Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic. Limnol. Oceanogr., 54(2): 577-589. https://doi.org/10.4319/lo.2009.54.2.0577

Cited by

  1. Dynamics of the Physical and Biogeochemical Processes during Hypoxia in Jinhae Bay, South Korea vol.33, pp.4, 2017, https://doi.org/10.2112/JCOASTRES-D-16-00122.1
  2. Biogeochemical Properties of Phosphorus During Summer in the Sediment of Yeongsan River, Lake and Estuary vol.23, pp.4, 2020, https://doi.org/10.7846/jkosmee.2020.23.4.286
  3. Emergy-Based Value of Ecosystem Services Provided by the Korean seas vol.24, pp.3, 2021, https://doi.org/10.7846/jkosmee.2021.24.3.119