초록
본 논문에서는 조명과 배경에 강인한 동적임계값을 이용한 손 영상 분할방법을 제안한다. 먼저 시간단위 입력 차영상을 구하여 움직이는 물체에 대한 손의 실루엣을 추출한다 그 후, 추출된 손 실루엣에 해당하는 영상의 R,G,B 히스토그램 분석을 통하여 R,G,B 각각에 대한 임계구간을 동적으로 구한다. 마지막으로 획득된 동적 임계값을 이용하여 영상에서 손영역을 분할한 다음 모폴로지, 연결요소 분석, 플러드필 연산을 이용한 잡음 제거를 수행한다. 실험 결과 본 논문에서 제시하는 기법은 기존의 비전 기술을 통한 손 인식 기법들과 비교하여 별도의 고정임계값을 두지 않고 실행시간에 정확한 임계값을 추출 할 수 있으며, 다양한 배경과 조명에 대해서도 정확하게 손을 분할할 수 있다. 본 연구에서 제안한 기법은 혼합 현실 응용을 위한 사용자 인터페이스로 사용될 수 있다.
In this paper, we propose a hand image segmentation method using the dynamic threshold values on input images with various lighting and background attributes. First, a moving hand silhouette is extracted using the camera input difference images, Next, based on the R,G,B histogram analysis of the extracted hand silhouette area, the threshold interval for each R, G, and B is calculated on run-time. Finally, the hand area is segmented using the thresholding and then a morphology operation, a connected component analysis and a flood-fill operation are performed for the noise removal. Experimental results on various input images showed that our hand segmentation method provides high level of accuracy and relatively fast stable results without the need of the fixed threshold values. Proposed methods can be used in the user interface of mixed reality applications.