• Title/Summary/Keyword: Background Segmentation

Search Result 407, Processing Time 0.027 seconds

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter(AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

Automatic Object Segmentation and Background Composition for Interactive Video Communications over Mobile Phones

  • Kim, Daehee;Oh, Jahwan;Jeon, Jieun;Lee, Junghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • This paper proposes an automatic object segmentation and background composition method for video communication over consumer mobile phones. The object regions were extracted based on the motion and color variance of the first two frames. To combine the motion and variance information, the Euclidean distance between the motion boundary pixel and the neighboring color variance edge pixels was calculated, and the nearest edge pixel was labeled to the object boundary. The labeling results were refined using the morphology for a more accurate and natural-looking boundary. The grow-cut segmentation algorithm begins in the expanded label map, where the inner and outer boundary belongs to the foreground and background, respectively. The segmented object region and a new background image stored a priori in the mobile phone was then composed. In the background composition process, the background motion was measured using the optical-flow, and the final result was synthesized by accurately locating the object region according to the motion information. This study can be considered an extended, improved version of the existing background composition algorithm by considering motion information in a video. The proposed segmentation algorithm reduces the computational complexity significantly by choosing the minimum resolution at each segmentation step. The experimental results showed that the proposed algorithm can generate a fast, accurate and natural-looking background composition.

  • PDF

Background Surface Estimation for Reverse Engineering of Reliefs

  • Liu, Shenglan;Martin, Ralph R.;Langbein, Frank C.;Rosin, Paul L.
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 2007
  • Reverse engineering of reliefs aims to turn an existing relief superimposed on an underlying surface into a geometric model which may be applied to a different base surface. Steps in this process include segmenting the relief from the background, and describing it as an offset height field relative to the underlying surface. We have previously considered relief segmentation using a geometric snake. Here, we show how to use this initial segmentation to estimate the background surface lying under the relief, which can be used (i) to refine the segmentation and (ii) to express the relief as an offset field. Our approach fits a B-spline surface patch to the measured background data surrounding the relief, while tension terms ensure this background surface smoothly continues underneath the relief where there are no measured background data points to fit. After making an initial estimate of relief offset height everywhere within the patch, we use a support vector machine to refine the segmentation. Tests demonstrate that this approach can accurately model the background surface where it underlies the relief, providing more accurate segmentation, as well as relief height field estimation. In particular, this approach provides significant improvements for relief concavities with narrow mouths and can segment reliefs with small internal holes.

Motion Segmentation from Color Video Sequences based on AMF

  • Kim, Alla;Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.31-38
    • /
    • 2009
  • A process of identifying moving objects from data is typical task in many computer vision applications. In this paper, we propose a motion segmentation method that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modelling. To demonstrate the effectiveness of proposed approach, we tested it gray-scale video data as well as RGB color space.

  • PDF

A Background Segmentation Using Color and Edge Information In Low Resolution Color Image (저해상도 칼라 영상의 색상 정보와 에지정보를 이용한 배경 분리)

  • 정민영;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.39-42
    • /
    • 2003
  • In this paper, we propose a background segmentation method in low resolution color image. A segmentation algorithm is based on color and edge information. In edge image, adaptive and local thresholds are applied to suppress paint boundaries. Through our experiments, the proposed algorithm efficiently segments background from objects.

  • PDF

Background Segmentation in Color Image Using Self-Organizing Feature Selection (자기 조직화 기법을 활용한 컬러 영상 배경 영역 추출)

  • Shin, Hyun-Kyung
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.407-412
    • /
    • 2008
  • Color segmentation is one of the most challenging problems in image processing especially in case of handling the images with cluttered background. Great amount of color segmentation methods have been developed and applied to real problems. In this paper, we suggest a new methodology. Our approach is focused on background extraction, as a complimentary operation to standard foreground object segmentation, using self-organizing feature selective property of unsupervised self-learning paradigm based on the competitive algorithm. The results of our studies show that background segmentation can be achievable in efficient manner.

Accurate Segmentation Algorithm of Video Dynamic Background Image Based on Improved Wavelet Transform

  • Ming, Ming
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.711-718
    • /
    • 2022
  • In this paper, an accurate segmentation algorithm of video dynamic background image (VDBI) based on improved wavelet transform is proposed. Based on the smooth processing of VDBI, the traditional wavelet transform process is improved, and the two-layer decomposition of dynamic image is realized by using two-dimensional wavelet transform. On the basis of decomposition results and information enhancement processing, image features are detected, feature points are extracted, and quantum ant colony algorithm is adopted to complete accurate segmentation of the image. The maximum SNR of the output results of the proposed algorithm can reach 73.67 dB, the maximum time of the segmentation process is only 7 seconds, the segmentation accuracy shows a trend of decreasing first and then increasing, and the global maximum value can reach 97%, indicating that the proposed algorithm effectively achieves the design expectation.

An Improved Multiple Interval Pixel Sampling based Background Subtraction Algorithm (개선된 다중 구간 샘플링 배경제거 알고리즘)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • Foreground/background segmentation in video sequences is often one of the first tasks in machine vision applications, making it a critical part of the system. In this paper, we present an improved sample-based technique that provides robust background image as well as segmentation mask. The conventional multiple interval sampling (MIS) algorithm have suffer from the unbalance of computation time per frame and the rapid change of confidence factor of background pixel. To balance the computation amount, a random-based pixel update scheme is proposed and a spatial and temporal smoothing technique is adopted to increase reliability of the confidence factor. The proposed method allows the sampling queue to have more dispersed data in time and space, and provides more continuous and reliable confidence factor. Experimental results revealed that our method works well to estimate stable background image and the foreground mask.

A Segmentation Method for a Moving Object on A Static Complex Background Scene. (복잡한 배경에서 움직이는 물체의 영역분할에 관한 연구)

  • Park, Sang-Min;Kwon, Hui-Ung;Kim, Dong-Sung;Jeong, Kyu-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.321-329
    • /
    • 1999
  • Moving Object segmentation extracts an interested moving object on a consecutive image frames, and has been used for factory automation, autonomous navigation, video surveillance, and VOP(Video Object Plane) detection in a MPEG-4 method. This paper proposes new segmentation method using difference images are calculated with three consecutive input image frames, and used to calculate both coarse object area(AI) and it's movement area(OI). An AI is extracted by removing background using background area projection(BAP). Missing parts in the AI is recovered with help of the OI. Boundary information of the OI confines missing parts of the object and gives inital curves for active contour optimization. The optimized contours in addition to the AI make the boundaries of the moving object. Experimental results of a fast moving object on a complex background scene are included.

  • PDF