DOI QR코드

DOI QR Code

Emission Control Technologies for N2O from Adipic Acid Production Plants

아디픽산 제조공정으로부터 발생되는 N2O에 대한 배출제어기술

  • Kim, Moon-Hyeon (Department of Environmental Engineering, Daegu University)
  • 김문현 (대구대학교 환경공학과)
  • Received : 2011.03.18
  • Accepted : 2011.04.22
  • Published : 2011.06.30

Abstract

Nitrous oxide ($N_2O$) is one of six greenhouse gases listed up in the Kyoto Protocol, and it effects a strong global warming because of its much greater global warming potential (GWP), by 310 times over a 100-year time horizon, than $CO_2$. Although such $N_2O$ emissions from both natural and anthropogenic sources occur, the latter can be controlled using suitable abatement technologies, depending on them, to reduce $N_2O$ below acceptable or feasible levels. This paper has extensively reviewed the anthropogenic $N_2O$ emission sources and their related compositions, and the state-of-the-art non-catalytic and catalytic technologies of the emissions controls available currently to representative, large $N_2O$ emission sources, such as adipic acid production plants. Challengeable approaches to this source are discussed to promote establishment of advanced $N_2O$ emission control technologies.

Keywords

References

  1. BASF, 2009, BASF report-2009, Communications and government realtions, BASF SE, Ludwigshafen, Germany, 1-224.
  2. Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H., Elkins, J. W., Ellis, J. T., Conway, T., Zhang, N., Lang, P., Clarket, A. D., 1996, Atmospheric gas concentrations over the past century measured in air from firn at the South Pole, Nature, 383, 231-235. https://doi.org/10.1038/383231a0
  3. Blanco, J., Avila, P., Marzo, L., 1993, Low temperature multibed SCR process for tail gas treatment in nitric acid plant, Catal. Today, 17, 325-332. https://doi.org/10.1016/0920-5861(93)80036-Z
  4. Centi, G., Perathoner, S., Vazzana, F., Marella, M., Tomaselli, M., Mantegazza, M., 2000, Novel catalysts and catalytic technologies for $N_2O$ removal from industrial emissions containing $O_2$, $H_2O$ and $SO_2$, Adv. Environ. Res., 4, 325-338. https://doi.org/10.1016/S1093-0191(00)00032-0
  5. Choe, J. S., Cook, P. J., Petrocelli, F. P., 1993, Developing $N_2O$ abatement technology for the nitric acid industry, Proceedings of the 1993 ANPSG Conference, San Destin, 6 October, Florida, USA, 1-13.
  6. Dann, T. W., Schulz, K. H., Mann, M., Collings, M., 1995, Supported rhodium catalysts for nitrous oxide decomposition in the presence of NO, $CO_2$, $SO_2$ and CO, Appl. Catal. B, 6, 1-10. https://doi.org/10.1016/0926-3373(95)00006-2
  7. de Soete, G. G., 1993, Nitrous oxide from combustion and industry: Chemistry, emissions and control, Rev. Inst. Franc. Petr., 48, 413-451. https://doi.org/10.2516/ogst:1993026
  8. EFMA, 2000, Best available technologies for pollution prevention and control in the European fertilizer industry: Production of nitric acid, Booklet No. 2, European Fertilizer Manufactures' Association, Brussels, Belgium, 1-32.
  9. EPA, 2006, Industrial processes (Chapter IV), in Global mitigation of non-$CO_2$ greenhouse gases, EPA-430-R-06-005, Washington DC, USA, 1-14.
  10. Gutierrez, M. J. F., Baxter, D., Hunter, C., Svoboda, K., 2005, Nitrous oxide ($N_2O$) emissions from waste and biomass to energy plants, Waste Manage. Res., 23, 133-147. https://doi.org/10.1177/0734242X05052803
  11. Hamon, C., Janaasens, P., 2001, Catalytic decomposition of $N_2O$ in a glyoxal unit, Proceedings of NOXCONF 2001: International conference on atmospheric pollution $NO_x$ and $N_2O$ emission control: Panel of available techniques, Paris-La Defense, 21-22 March, France, Session 7: State-of-the-art across industrial sectors, 1-8.
  12. Hevia, M. A. G., Perez-Ramirez, J., 2008, Assessment of the low-temperature $EnviNO_x^{\circledR}$ variant for catalytic $N_2O$ abatement over steam-activated FeZSM-5, Appl. Catal. B, 77, 248-254. https://doi.org/10.1016/j.apcatb.2007.07.013
  13. IPCC, 2000, $N_2O$ emissions from adipic acid and nitric acid production (Chapter 3), in Good practice guidance and uncertainty management in national greenhouse gas inventories, IPCC's Task Force on National Greenhouse Gas Inventories (TFI), 3.1-3.131.
  14. IPCC, 2001, Climate change 2001: The scientific basis. Contribution of the working group I to the 3rd assessment report of the IPCC, Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., Johnson, C. A. (eds), Cambridge University Press, Cambridge, UK and New York, NY, USA, 1-881.
  15. Kapteijin, F., Rodriguez-Mirasol, J., Moulijn, J. A., 1996, Heterogeneous catalytic decomposition of nitrous oxide, Appl. Catal. B, 9, 25-64. https://doi.org/10.1016/0926-3373(96)90072-7
  16. Kim, M. H., 2008, HCCI combustion engines with ultra low $CO_2$ and $NO_x$ emissions and new catalytic emission control technology, J. Environ. Sci., 17, 1413-1419. https://doi.org/10.5322/JES.2008.17.12.1413
  17. Kim, M. H., Ebner, J. R., Friedman, R. M., Vannice, M. A., 2001, Dissociative $N_2O$ adsorption on supported Pt, J. Catal., 204, 348-357. https://doi.org/10.1006/jcat.2001.3410
  18. Kim, M. H., Ebner, J. R., Friedman, R. M., Vannice, M. A., 2002, Determination of metal dispersion and surface composition in supported Cu-Pt catalysts, J. Catal., 208, 381-392. https://doi.org/10.1006/jcat.2002.3569
  19. Kim, M. H., Ham, S. W., 2010, Determination of $N_2O$ emissions levels in the selective reduction of $NO_x$ by $NH_3$ over an on-site-used commercial $V_2O_5-WO_3/TiO_2$ catalyst using a modified gas cell, Top. Catal., 53, 597-607. https://doi.org/10.1007/s11244-010-9493-9
  20. Machida, T., Nakazawa, T., Fujii, Y., Aoki, S., Watanabe, O., 1995, Increase in the atmospheric nitrous oxide concentration during the last 250 years, Geophys. Res. Lett., 22, 2921-2924. https://doi.org/10.1029/95GL02822
  21. McGhee, W. D., 1998, Selective introduction of active sites for hydroxylation of benzene, US Patent 5,808,167.
  22. Neveu, B., Hamon, C., Malefant, K., 1999, Catalytic reduction of nitrous oxide content in gases, French Patent WO 99/34,901.
  23. Odaka, M., Koike, N., Suzuki, H., 2000, Influence of catalyst deactivation on $N_2O$ emissions from automobiles, Chemosphere: Glob. Change Sci., 2, 413-423. https://doi.org/10.1016/S1465-9972(00)00042-8
  24. Ovchinnikova, E. V., Chumachenko, V. A., Piryutko, L. V., Kharitonov, A. C., Noskov, A. S., 2009, Detoxication of nitrose gases formed in the production of adipic acid: The two-stage catalytic cleaning process, Catal. Ind., 1, 76-84. https://doi.org/10.1134/S2070050409010115
  25. Panov, G. I., Uriarte, A. K., Rodkin, M. A., Sobolev, V. I., 1998, Generation of active oxygen species on solid surfaces: Opportunity for novel oxidation technologies over zeolites, Catal. Today, 41, 365-385. https://doi.org/10.1016/S0920-5861(98)00026-1
  26. Perez-Ramirez, J., Kapteijn, F., Mul, G., Xu, X., Moulijn, J. A., 2002, Ex-framework FeZSM-5 for control of $N_2O$ in tail-gases, Catal. Today, 76, 55-74. https://doi.org/10.1016/S0920-5861(02)00208-0
  27. Perez-Ramirez, J., Kapteijn, F., Schoffel, K., Moulijn, J. A., 2003, Formation and Control of $N_2O$ in nitric acid production: Where do we stand today, Appl. Catal. B, 44, 117-151. https://doi.org/10.1016/S0926-3373(03)00026-2
  28. Rahn, T., Wahlen, M., 2000, A reassessment of the global isotopic budget of atmospheric nitrous oxide, Glob. Biogeochem. Cycl., 14, 537-543. https://doi.org/10.1029/1999GB900070
  29. Ruszak, M., Inger, M., Witkowski, S., Wilk, M., Kotarba, A., Sojka., Z., 2008, Selective $N_2O$ removal from the process gas of nitric acid plants over ceramic 12CaO․$7Al_2O_3$ catalyst, Catal. Lett., 126, 72-77. https://doi.org/10.1007/s10562-008-9619-x
  30. Teles, J., RoBler, B., Pinkos, R., Genger, T., Preiss, T., 2005, Method for producing cyclododecanone, WO 2005/030,689 A2.
  31. Thiemens, M. H., Trogler, W. C., 1991, Nylon production: An unknown source of atmospheric nitrous oxide, Science, 251, 932-934. https://doi.org/10.1126/science.251.4996.932
  32. UN, 1998, Kyoto Protocol to the United Nations framework convention on climate change, United Nations, New York, USA, 1-20.
  33. Wigley, T. M. L., 1998, The Kyoto Protocol: $CO_2, CH_4$ and climate implications, Geophys. Res. Lett., 25, 2285-2288. https://doi.org/10.1029/98GL01855
  34. Winter, F., Wartha, C., Hofbauer, H., 1999, NO and $N_2O$ formation during the combustion of wood, straw, malt waste and peat, Bioresource Technol., 70, 39-49. https://doi.org/10.1016/S0960-8524(99)00019-X
  35. Wojtowicz, M. A., Pels, J. R., Moulijn, J. A., 1993, Combustion of coal as a source of N20 emission, Fuel Proc. Technol., 34, 1-71. https://doi.org/10.1016/0378-3820(93)90061-8
  36. Yang, W. H., Kim, M. H., 2006, Catalytic reduction of $N_2O$ by $H_2$ over well-characterized Pt surfaces, Korean J. Chem. Eng., 23, 908-918. https://doi.org/10.1007/s11814-006-0007-1

Cited by

  1. O Emissions Control: In-Duct-Dependent Technological Options vol.21, pp.1, 2012, https://doi.org/10.5322/JES.2012.21.1.113