Syntheses and Characterizations of Functionalized Graphenes and Reduced Graphene Oxide

관능기화 그래핀 및 환원된 그래핀 옥사이드의 합성과 특성분석

  • Moon, Hyun-Gon (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 문현곤 (금오공과대학교 고분자공학과) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Received : 2011.01.28
  • Accepted : 2011.02.14
  • Published : 2011.05.25

Abstract

Graphene oxide (GO) was prepared by the Hummers and Offeman method from graphite. Reduced graphene oxide (EGO) and functionalized graphenes were synthesized from GO by using hydrazine hydrate and amine-functionalized alkyl groups, respectively. The structures of the GO, EGO, and functionalized graphenes were identified by FTIR and $^{13}C$ NMR. In addition, we examined the thermal stability, morphology and dispersibility of the materials in various organic solvents. AFM disclosed that GO and RGO consisted of one- or two-layer graphene regions throughout the film. However, the functionalized graphene films showed average thicknesses of 2.26~3.30 nm, The thermal stability of the functionalized graphenes was poorer than that of the EGO. The functionalized graphenes were well dispersed in toluene or chloroform, as evidenced by the lack of the characteristic graphite reflection in the solutions.

Hummers와 Offeman 방법을 이용하여 흑연으로부터 graphene oxide(GO)를 합성하였다. Hydrazine hydrate를 사용하여 GO를 환원시켜 reduced graphene oxide (RGO)를 합성하였으며, 말단에 amine이 치환된 유기화제를 사용하여 관능기화 그래핀을 합성하였다. 합성된 GO, RGO, 그리고 관능기화 그래핀의 구조를 확인하기 위하여 FTIR과 $^{13}C$ NMR를 이용하였다. 합성된 시료들의 안정성, 모폴로지 및 다양한 유기용매 내에서의 분산도를 각각 조사하였다. AFM 사진으로부터 GO와 RGO는 한층 또는 두층 두께의 그래핀으로 이루어졌으며, 관능기화 그래핀들의 평균두께는 약 2.26~3.30 nm임을 알았다. 관능기화 그래핀들의 열 안정성은 RGO보다 낮았다. 관능기화 그래핀들은 용액상태에서 흑연의 특성 피크가 관찰되지 않는 것으로 보아 클로로포름과 톨루엔에 좋은 분산성을 가지는 것으로 확인되었다.

Keywords

References

  1. J. Biscoe and B. E. Warren, J. Appl. Phys., 13, 364 (1942). https://doi.org/10.1063/1.1714879
  2. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/b917103g
  3. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Pine, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature, 448, 457 (2007). https://doi.org/10.1038/nature06016
  4. S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, ACS Nano, 2, 572 (2008). https://doi.org/10.1021/nn700349a
  5. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano, 2, 463 (2008). https://doi.org/10.1021/nn700375n
  6. S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, and R. S. Ruoff, Nano Lett., 9, 1593 (2009). https://doi.org/10.1021/nl803798y
  7. D. Yanga, A. Velamakannia, G. Bozoklub, S. Park, M. Stollera, R. D. Pinera, S. Stankovichc, I. Junga, D. A. Fieldd, C. A. Ventrice, and R. S. Ruoff, Carbon, 47, 145 (2009). https://doi.org/10.1016/j.carbon.2008.09.045
  8. S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, S. T. Nguyen, and R. S. Ruoff, Chem. Mater., 20, 6592 (2008). https://doi.org/10.1021/cm801932u
  9. K. S. Novoselov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  10. K. S. Novoselov, Proc. Natl Acad. Sci., 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  11. K. S. Novoselov, Nature, 438, 197 (2005). https://doi.org/10.1038/nature04233
  12. Y. Zhang, J. W. Tan, K. L. Stormer, and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  13. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  14. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008). https://doi.org/10.1021/nl802558y
  15. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  16. H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. H. Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).
  17. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  18. S. Ansari and E. P. Giannelis, J. Polym. Sci. Part B: Polym. Phys., 47, 888 (2009). https://doi.org/10.1002/polb.21695
  19. C. Gao, C. D. Vo, Y. Z. Jin, W. Li, and S. P. Armes, Macromolecules, 38, 8634 (2005). https://doi.org/10.1021/ma050823e
  20. H. Kong, C. Gao, and D. Yan, Macromolecules, 37, 4022 (2004). https://doi.org/10.1021/ma049694c
  21. Y.-P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L. A. Riddle, Y. J. Yu, and D. L. Carroll, Chem. Mater., 13, 2864 (2001). https://doi.org/10.1021/cm010069l
  22. W. Hummers and R. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  23. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  24. H. He, T. Riedl, A. Lerf, and J. Klinowski, J. Phys. Chem., 100, 19954 (1996). https://doi.org/10.1021/jp961563t
  25. H. He, J. Klinowski, M. Forster, and A. Lerf, Chem. Phys. Lett., 287, 53 (1998). https://doi.org/10.1016/S0009-2614(98)00144-4
  26. A. Lerf, H. He, T. Riedl, M. Forster, and J. Klinowski, Solid State Ionics, 101, 857 (1997).
  27. A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B, 102, 4477 (1998). https://doi.org/10.1021/jp9731821
  28. R. Neidlein, T. V. Dao, A. Gieren, M. Kokkinidis, R. Wilckens, and H. P. Geserich, Chem. Ber., 115, 2898 (1982). https://doi.org/10.1002/cber.19821150820
  29. P. S. Wharton and D. H. Bohlen, J. Org. Chem., 26, 3615 (1961). https://doi.org/10.1021/jo01067a117
  30. Z. Zalan, L. Lazar, and F. Fueloep, Curr. Org. Chem., 9, 357 (2005). https://doi.org/10.2174/1385272053174949
  31. R. K. Mueller, D. Felix, J. Schreiber, and A. Eschenmoser, HeIv. Chim. Acta, 53, 1479 (1970). https://doi.org/10.1002/hlca.19700530630
  32. P. M. Lahti, Tetrahedron Lett., 24, 2339 (1983). https://doi.org/10.1016/S0040-4039(00)81919-X
  33. M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. H. Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007). https://doi.org/10.1021/cm0630800
  34. R. K. Prud'homme, I. A. Aksay, D. Adamson, and A. Abdala, Chem. Abstr., 146, 442670 (2007).
  35. R. K. Prud'homme, B. Ozbas, I. A. Aksay, R. A. Register, and D. Adamson, Chem. Abstr., 148, 472932 (2008).
  36. A. V. Raghu, Y. R. Lee, H. M. Jeong, and C. M. Shin, Macromol. Chem. Phys., 209, 2487 (2008). https://doi.org/10.1002/macp.200800395