Browse > Article

Syntheses and Characterizations of Functionalized Graphenes and Reduced Graphene Oxide  

Moon, Hyun-Gon (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Polymer(Korea) / v.35, no.3, 2011 , pp. 265-271 More about this Journal
Abstract
Graphene oxide (GO) was prepared by the Hummers and Offeman method from graphite. Reduced graphene oxide (EGO) and functionalized graphenes were synthesized from GO by using hydrazine hydrate and amine-functionalized alkyl groups, respectively. The structures of the GO, EGO, and functionalized graphenes were identified by FTIR and $^{13}C$ NMR. In addition, we examined the thermal stability, morphology and dispersibility of the materials in various organic solvents. AFM disclosed that GO and RGO consisted of one- or two-layer graphene regions throughout the film. However, the functionalized graphene films showed average thicknesses of 2.26~3.30 nm, The thermal stability of the functionalized graphenes was poorer than that of the EGO. The functionalized graphenes were well dispersed in toluene or chloroform, as evidenced by the lack of the characteristic graphite reflection in the solutions.
Keywords
graphene; graphene oxide; functionalized graphene;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 A. Lerf, H. He, T. Riedl, M. Forster, and J. Klinowski, Solid State Ionics, 101, 857 (1997).
2 A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B, 102, 4477 (1998).   DOI   ScienceOn
3 R. Neidlein, T. V. Dao, A. Gieren, M. Kokkinidis, R. Wilckens, and H. P. Geserich, Chem. Ber., 115, 2898 (1982).   DOI
4 P. S. Wharton and D. H. Bohlen, J. Org. Chem., 26, 3615 (1961).   DOI
5 Z. Zalan, L. Lazar, and F. Fueloep, Curr. Org. Chem., 9, 357 (2005).   DOI   ScienceOn
6 R. K. Mueller, D. Felix, J. Schreiber, and A. Eschenmoser, HeIv. Chim. Acta, 53, 1479 (1970).   DOI
7 P. M. Lahti, Tetrahedron Lett., 24, 2339 (1983).   DOI   ScienceOn
8 M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. H. Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007).   DOI   ScienceOn
9 R. K. Prud'homme, I. A. Aksay, D. Adamson, and A. Abdala, Chem. Abstr., 146, 442670 (2007).
10 R. K. Prud'homme, B. Ozbas, I. A. Aksay, R. A. Register, and D. Adamson, Chem. Abstr., 148, 472932 (2008).
11 A. V. Raghu, Y. R. Lee, H. M. Jeong, and C. M. Shin, Macromol. Chem. Phys., 209, 2487 (2008).   DOI   ScienceOn
12 K. S. Novoselov, Proc. Natl Acad. Sci., 102, 10451 (2005).   DOI   ScienceOn
13 Y. Zhang, J. W. Tan, K. L. Stormer, and P. Kim, Nature, 438, 201 (2005).   DOI   ScienceOn
14 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008).   DOI   ScienceOn
15 M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008).   DOI   ScienceOn
16 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006).   DOI   ScienceOn
17 H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. H. Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).
18 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature, 457, 706 (2009).   DOI   ScienceOn
19 S. Ansari and E. P. Giannelis, J. Polym. Sci. Part B: Polym. Phys., 47, 888 (2009).   DOI   ScienceOn
20 C. Gao, C. D. Vo, Y. Z. Jin, W. Li, and S. P. Armes, Macromolecules, 38, 8634 (2005).   DOI   ScienceOn
21 H. Kong, C. Gao, and D. Yan, Macromolecules, 37, 4022 (2004).   DOI   ScienceOn
22 Y.-P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L. A. Riddle, Y. J. Yu, and D. L. Carroll, Chem. Mater., 13, 2864 (2001).   DOI   ScienceOn
23 W. Hummers and R. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).   DOI
24 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).   DOI   ScienceOn
25 H. He, T. Riedl, A. Lerf, and J. Klinowski, J. Phys. Chem., 100, 19954 (1996).   DOI   ScienceOn
26 H. He, J. Klinowski, M. Forster, and A. Lerf, Chem. Phys. Lett., 287, 53 (1998).   DOI   ScienceOn
27 K. S. Novoselov, Nature, 438, 197 (2005).   DOI   ScienceOn
28 D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).   DOI   ScienceOn
29 K. S. Novoselov, Science, 306, 666 (2004).   DOI
30 J. Biscoe and B. E. Warren, J. Appl. Phys., 13, 364 (1942).   DOI
31 D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Pine, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature, 448, 457 (2007).   DOI   ScienceOn
32 S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, ACS Nano, 2, 572 (2008).   DOI   ScienceOn
33 H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano, 2, 463 (2008).   DOI   ScienceOn
34 S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, and R. S. Ruoff, Nano Lett., 9, 1593 (2009).   DOI   ScienceOn
35 D. Yanga, A. Velamakannia, G. Bozoklub, S. Park, M. Stollera, R. D. Pinera, S. Stankovichc, I. Junga, D. A. Fieldd, C. A. Ventrice, and R. S. Ruoff, Carbon, 47, 145 (2009).   DOI   ScienceOn
36 S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, S. T. Nguyen, and R. S. Ruoff, Chem. Mater., 20, 6592 (2008).   DOI   ScienceOn